बिहार विद्यालय परीक्षा समिति, पटना

वर्ष 2017 का मॉडल प्रश्न पत्र एवं उत्तरमाला

CHEMISRY

Set-1-10

CHEMISRY (Set-1)

सही उत्तर चुने:-

Choose the correct answer :- (1 mark each)

1. A तथा B तत्वों से बना एक यौगिक का संरचना क्रिस्टलीकृत होता है जिसमें A घन के कोनो पर तथा Y के परमाणु फलक केन्द्रों पर अवस्थित है। इस यौगिक का सूत्र क्या होगा?
(क) AB_{3}
(ख) $\mathrm{A}_{3} \mathrm{~B}$
(ग) AB
(घ) AB_{2}

The structure of a compound made of elements A and B is crystalised. The atom 'A' is situated at the corners and atom ' B ' is situated at the centre of each face of the cube. What is the formula of this compound?
(a) AB_{3}
(b) $\mathrm{A}_{3} \mathrm{~B}$
(c) AB
(d) AB_{2}
2. किसका क्वथनांक 1 वायुमंडलीय दाब पर सबसे अधिक होता है ?
(क) 0.1 M NaCl
(ख) $0.1 \mathrm{M} \mathrm{BaCl}_{2}$
(ग) 0.1 M Sucrose
(घ) 0.1 M Glucose

Which has maximum boiling point at one atmosphoric pressure?
(a) 0.1 M NaCl
(b) $0.1 \mathrm{M} \mathrm{BaCl}_{2}$
(c) 0.1 M Sucrose
(d) 0.1 M Glucose
3. फैराडे के विधुतविच्छेदन का द्वितीय नियम संबंधित है-
(क) धनायन के बेग से
(ख) ऋणायन के परमाणु संख्या से
(ग) धनायन के परमाणु से
(घ) विधुत अपघट्य के समतुल्य भार से

Faraday's second law of electrolysis is related -
(a) with velocity of positive ions of negative ions
(c) with atoms of positive ions
(d) with equivalent weight of electrolyte
4. हिलियम का मुख्य स्त्रोत है-
(क) रेडियम
(ख) मोनाजाइट
(ग) हवा
(घ) जल

The main source of helium is
(a)
Radium
(b) Monazite
(c) Air
(d) Water
5. $\mathrm{Ni}(\mathrm{CO})_{4}$ में निकेल की ऑक्सीकरण संख्या क्या है ?
(क) 1
(ख) 3
(ग) 0
(घ) 2

What is oxidation number of nickel in $\mathrm{Ni}(\mathrm{CO})_{4}$?
(a) 1
(b) 3
(c) 0
(d) 2
6. निम्नलिखित में कौन हाइड्रोजन बंधन नहीं बनाता है-
(क) NH_{3}
(ख) $\mathrm{H}_{2} \mathrm{O}$
(ग) HF
(घ) HCl

Which of the following does not form Hydrogen bonding ?
(a) NH_{3}
(b) $\mathrm{H}_{2} \mathrm{O}$
(c) HF
(d) HCl
7. एल्किन का सामान्य सूत्र है-
(क) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
(ख) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
(ग) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
(घ) इनमें से कोई नहीं

The general formula of alkene is-
(a)
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$
(b) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
(c) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
(d) None of these
8. इनमें से किसमें आइसोप्रीन इकाई है ?
(क) प्राकृतिक रबर
(ख) टेरलिन
(ग) नायलॉन-6, 6
(घ) पॉलिथीन

Isoprene monomer is present in which of the following?
(a)
Natural rubber
(b) Terylene
(b)
Nylon - 6, 6
(d) Polythene
9. कैल्शियम फॉर्मेट का स्त्रवण करने पर प्राप्त होता है-
(क) $\mathrm{CH}_{3} \mathrm{CHO}$
(ख) HCHO
(ग) HCOOH
(घ) $\mathrm{CH}_{3} \mathrm{COOH}$

The distillation of calcium formate, gives -
(a)
$\mathrm{CH}_{3} \mathrm{CHO}$
(b) HCHO
(c) HCOOH
(d)

$\mathrm{CH}_{3} \mathrm{COOH}$

10. किसी प्रतिक्रिया के लिए दर स्थिरांक का इकाई मोल प्रति ली० प्रति सेकण्ड है। प्रतिक्रिया की कोटि होगी-
(क) 0
(ख) 1
(ग) 2
(घ) 3

The unit for rate constant for a reaction is mole $\mathrm{L}^{-1} \sec ^{-1}$. The order of the reaction is-
(a)
0
(b) 1
(c) 2
(d) 3
11. सेल प्रतिक्रिया स्वतः होती है जब-
(क) E° ॠणात्मक है
(ख) $\Delta \mathrm{G}^{\circ}$ ॠणात्मक है
(ग) $\Delta \mathrm{G}^{\circ}$ धनात्मक है
(घ) इनमें से कोई नहीं

Spontaneous cell reaction will occur when
(a)
E° is negative.
(b) $\Delta \mathrm{G}^{\circ}$ is negative
(c) $\Delta \mathrm{G}^{\circ}$ is positive.
(d) None of these
12. कुहरा कौन कोलॉइडल सिस्टम है?
(क) गैस का द्रव में
(ख) द्रव का गैस मे
(ग) ठोस का द्रव में
(घ) द्रव का द्रव में

Fog is the colloidal system of-
(a)
Gas in liquid
(b) Liquid in gas
(c) Solid in liquid
(d) Liquid in liquid
13. इनमें से कौन प्रतिचुम्बकीय है ?
(क) CO^{2+}
(ख) Ni^{2+}
(ग) Cu^{2+}
(घ) Zn^{2+}

Which one of these is diamagnetic ?
(a)
CO^{2+}
(b) Ni^{2+}
(c) Cu^{2+}
(d) Zn^{2+}
14. भूरे वलय संकुल $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ में Fe का ऑक्सीकरण अवस्था है-
(क) +1
(ख) +2
(ग) +3
(घ) +4

The O.S. of Fe in brown ring complex $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ is-
(a)
$+1$
(b) +2
(c) +3
(d) +4
15. अमोनिया को शुष्क किया जाता है-
(क) निर्जलीय CaCl_{2} से
(ख) CaO से
(ग) सांद्र $\mathrm{H}_{2} \mathrm{SO}_{4}$
(घ) $\mathrm{P}_{4} \mathrm{O}_{10}$ से

Ammonia is dried from
(a)
Anhydrous CaCl_{2}
(b) CaO
(c) Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(d) $\mathrm{P}_{4} \mathrm{O}_{10}$
16. विटामीन C है
(क) मेलेइक अम्ल
(ख) इसकोरबिक अम्ल
(ग) पारासिटामोल
(घ) लैक्टिक अम्ल

Vitamin ' C ' is-
(a)
Maleic acid
(b) Ascorbic acid
(c) Paracetamol(d)
Lactic acid
17. $1^{\circ}, 2^{\circ}$ तथा 3° एल्कोहलों के बीच अंतर दिखाया जाता है-
(क) ऑक्सीकरण विधि
(ख) लूकास परीक्षण
(ग) विक्टर मेयर परीक्षण
(घ) सभी
$1^{\circ}, 2^{\circ}$ and 3° alcohols are distinguished by
(a)
Oxidation method
(b) Lucos test
(c) Victor Mayer test
(d) All
18. इनमें से कौन सबसे अधिक क्षारीय है-
(क) NH_{3}
(ख) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(ग) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(घ) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$

Which one is the most alkaline ?
(a)
NH_{3}
(b) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}(\mathrm{d})\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
19. सोडियम सल्फेट का जलीय घोल में अक्रिय एलेक्ट्रॉड का उपयोग कर विधुत विच्छेदन किया जाता है तो कैथोड एवं एनोड पर क्या प्राप्त होता है ?
(क) $\mathrm{H}_{2}, \mathrm{O}_{2}$
(ख) $\mathrm{O}_{2}, \mathrm{H}_{2}$
(ग) $\mathrm{O}_{2}, \mathrm{Na}$
(घ) $\mathrm{O}_{2}, \mathrm{SO}_{2}$

Using inert electrode, electrolysis is done in the aqueous solution of sodium sulphate, What are the products obtained at cathode and at anode?
(a)
$\mathrm{H}_{2}, \mathrm{O}_{2}$
(b) $\mathrm{O}_{2}, \mathrm{H}_{2}$
(c) $\mathrm{O}_{2}, \mathrm{Na}$
(d) $\mathrm{O}_{2}, \mathrm{SO}_{2}$
20. किसी प्रतिक्रिया का अर्द्धजीवन काल अभिकारक के आरंभिक सांद्रण के व्युत्क्रमानुपाती होता है तो प्रतिक्रिया कोटि होगी-
(क) 0
(ख) 1
(ग) 2
(घ) 3

The half life period of a reaction is inversely proportional to the initial concentration. The order of reaction is-
(a)
0
(b) 1
(c) 2
(d) 3
21. कौन इनजाइम ग्लूकोज को अल्कोहल में परिवर्तित करता है-
(क) माल्टेज
(ख) डायस्टेज
(ग) जाइमेज
(घ) इनभरटेज

Which enzyme is converting glucose into alcohol?
(a)
Maltose
(b) Diastase
(c) Zymase
(d) Invertase
22. बेंजिन में $-\mathrm{NH}_{2}$ समूह है-
(क) ऑर्थो डायरेक्टिंग
(ख) मेटा डायरेक्टिंग
(ग) ऑर्थो एवं पारा डायरेक्टिंग
(घ) पारा डायरेक्टिंग

The NH_{2} group in benzene is-
(a)
Ortho-directing
(b) Meta directing
(c) Ortho-para directing
(d) Para-directing
23. एल्कोहल के एस्टरीफिकेशन का क्रम है-
(क) $1^{\circ}<2^{\circ}<3^{\circ}$
(ख) $1^{\circ}>2^{\circ}>3^{\circ}$
(ग) $1^{\circ}>3^{\circ}>2^{\circ}$
(घ) $1^{\circ}<3^{\circ}<2^{\circ}$

The order of esterification of alcohol is-
(a) $<2^{\circ}$
$1^{\circ}<2^{\circ}<3^{\circ}$
(b) $1^{\circ}>2^{\circ}>3^{\circ}$
(c) $1^{\circ}>3^{\circ}>2^{\circ}$
$2^{\circ}(d) 1^{\circ}<3^{\circ}$
24. सामान्य ताप एवं दाब पर किसी गैस के एक मोल का आयतन
(क) 11.2 ली०
(ख) 22.4 ली०
(ग) 10.2 ली०
(घ) 22.8 ली०

The volume of one litre of a gas at NTP is-
(a)
11.2 L
(b) 22.4 L
(c) 10.2 L
(d) 22.8 L
25. कौन ताप द्वारा प्रवाहित नहों होता है-
(क) सामान्यता
(ख) मोललता
(ग) मोलरता
(घ) फार्मलता

Which one is not affected by temperature-
(a)
Normality
(b) Malality
(c) Molarity
(d) Formality
26. आयरन के निष्कर्षण में उत्पन्न धातुमल है-
(क) CO
(ख) FeSiO_{3}
(ग) MgCiO_{3}
(घ) CaSiO_{3}

In the extraction fo iron, prduced slag is-
(a)
CO
(b) FeSiO_{3}
(c) MgCiO_{3}
(d) CaSiO_{3}
27. लैंथेनाइड संकुचन का अर्थ है-
(क) घनत्व में कमी
(ख) द्रव्यमान में कमी
(ग) आयनिक त्रिज्या में कमी
(घ) सक्रियता में कमी

The meaning of lanthanide contraction is-
(a)
Decrease in density
(b) Decrease in mass
(c) Decrease in ionic radius
(d) Decrease in activity
28. ईथर की उपस्थिति में एल्काइड हैलाइड तथा सोडियम धातु के बीच प्रतिक्रिया क्या कहलाती है-
(क) वुर्ज प्रतिक्रिया
(ख) कोल्बे प्रतिक्रिया
(ग) क्लमेंसन प्रतिक्रिया
(घ) इनमें से कोई नहीं

The reaction between alkylhalide and sodium metal in the presence of ether is called
(b)
Wurtz reaction
(b) Kolbe reaction
(c) Clamensen reaction
(d) None of these

SOLUTION

(1)	(a)	(2) (b)	(3)	(d)	(4)	b)	(5)	(c)
(6)	(d)	(7) (a)	(8)	(a)	(9)	(b)	(10)	(a)
(11)	(b)	(12) (b)	(13)	(d)	(14)	(a)	(15)	(c)
(16)	(b)	(17) (d)	(18)	(c)	(19)	(a)	(20)	(c)
(21)	(c)	(22) (c)	(23)	(b)		(b)	(25)	(b)
(26)	(d)	(27) (c)	(28)	(a)				

लघु उत्तरीय प्रश्नः-

Very Short Questions :- (2 marks each)

प्र० 1: रॉल्ट्स लॉ की व्याख्या करें।
Q. (a) Explain Raoult's law.
(b) How is Raoult's law a special condition of Henry's law?

उत्तर : रॉल्ट्स लॉ-
(अ) इस नियम के अनुसार, "स्थिर ताप पर वाष्पशील द्रवों के विलयन में प्रत्येक अवयव का आंशिक वाष्प दाब उसके मोल प्रभाज के अनुक्रमानुपाती होता है।"

मना कि द्विअंगी विलयन में दोनों घटक वाष्पशील द्रव है। माना कि घटक A तथा B है।

$$
\begin{aligned}
& \therefore p_{A} \propto X_{A} \text { तथा } p_{B} \propto X_{B} \\
& \text { Or, } p_{A}=p_{A}^{\circ} \cdot X_{A} \text { तथा } p_{B}=\stackrel{p}{B}_{\circ}^{\circ} \cdot X_{B}
\end{aligned}
$$

जहाँ p_{A}° तथा p_{B}° शुद्ध अवस्था में घटक का वाष्प दबाव है।
अतः निश्चित दाब पर प्रत्येक घटक का आंशिक दाब उसके मोल प्रभाज एवं शुद्ध अवस्था में वाष्प दाब का गुणनफल होता है।

$$
\begin{aligned}
\text { कुल दाब } \quad P_{T} & =p_{A}+p_{B} \\
P_{T} & =p_{A}^{\circ} \cdot X_{A}+p_{B}^{\circ} \cdot X_{B}
\end{aligned}
$$

(ब) राल्ट्स के नियमानुसार,
किसी विलयन में वाष्पशील विलेय का वाष्पदाब निम्न संबंध द्वारा प्रकट करते हैं-

$$
\begin{equation*}
p_{A}=p_{A}^{\circ} \cdot X_{A} \tag{1}
\end{equation*}
$$

गैस के द्रव में विलयन के लिए द्रव में विलेयता हेनरी के नियम से ज्ञात करनते हैं। इस नियम के अनुसार,

$$
\begin{equation*}
p_{A}=K_{H} \cdot X_{A} \tag{2}
\end{equation*}
$$

समीकरण (1) तथा (2) का तुलना करने पर हम पाते हैं कि वाष्पशील घटक या गैस का वाष्पदाब उनके मोल प्रभाज के समानुपाती होता है। अतः रॉल्ट्स लॉ हेनरी लॉ का ही विशेष परिस्थिति है।

Ans. (a) Raoult's law - Accordint to this law, the paritial V.P. of each componentof a solution at constant temperature is directly proportional to its mole fraction.

Suppose, in a binary solution, both components are volatile. Suppose, the components are A and B.

$$
\therefore p_{A} \propto X_{A} \text { and } p_{B} \propto X_{B}
$$

Or,

$$
p_{A}=p_{A}^{\circ} \cdot X_{A} \text { and } p_{B}=p_{B} \cdot X_{B}
$$

Here, p_{A}° and p_{B}° are the V.P. of components A and B in pure state.
Thus, partial V.P. of each component is equal to product of its mole fraction and V.P. of that component in pure state.

Total pressure,

$$
P_{T}=p_{A}+p_{B}
$$

Or,

$$
P_{T}=p_{A}^{\circ} \cdot X_{A}+p_{B}^{\circ} \cdot X_{B}
$$

(b) According to Raoult's law,

The V.P. of a volatile component is expressed by the relation.

$$
\begin{equation*}
p_{A}=p_{A}^{\circ} \cdot X_{A} \tag{1}
\end{equation*}
$$

For the solution of gas in liquid, the solubility is determined by Henry's law. According to this law,

$$
\begin{equation*}
p_{A}=K_{H} \cdot X_{A} \tag{2}
\end{equation*}
$$

Where, $\mathrm{K}_{\mathrm{H}}=$ Henery's law constant
Comparing equations (1) and (2), we get that V.P. of volatile component or a gas is directly proportional to its mole fraction. Thus, Raoult's law is special state of Henry's law.

प्र० 2: 18 ग्राम ग्लूकोज को 178.2 ग्राम जल के साथ मिलाया गया। इस विलयन में जल का $100^{\circ} \mathrm{C}$ पर वाष्प दाब क्या होगा।
Q. $\quad 18 \mathrm{gm}$ glucose is mixed with 178.2 gm water. What will be the V.P. of water in this solution at $100^{\circ} \mathrm{C}$?
उत्तर : जल का $100^{\circ} \mathrm{C}$ पर दाब $\mathrm{p}_{0}=760 \mathrm{~m} . \mathrm{m}$.

$$
n=\frac{18}{180}=0.1, \quad N=\frac{178.2}{18}=9.9
$$

हम जानते हैं कि

$$
\begin{aligned}
& \frac{p^{0}-p}{p^{0}}=\frac{n}{n+N} n, N \text { की तुलना में बहुत छोटा है, अत: } n+N=N \\
\therefore & \frac{p_{0}-p}{p_{0}}=\frac{n}{N} \quad \text { or, } \frac{760-p}{760}=\frac{0.1}{9.9} \quad \therefore p=752.3 \mathrm{~m} . \mathrm{m} .
\end{aligned}
$$

Ans. V.P. of water at $100^{\circ} \mathrm{C}=\mathrm{p}_{0}=760 \mathrm{~m} . \mathrm{m}$.

$$
n=\frac{18}{180}=0.1, \quad N=\frac{178.2}{18}=9.9
$$

We know that,

$$
\begin{aligned}
& \frac{p^{0}-p}{p^{0}}=\frac{n}{n+N} \quad \text { since } n \ll N, \therefore n+N=N \\
\therefore \quad & \frac{p_{0}-p}{p_{0}}=\frac{n}{N} \quad \text { or, } \frac{760-p}{760}=\frac{0.1}{9.9} \quad \therefore p=752.3 \mathrm{~m} . \mathrm{m} .
\end{aligned}
$$

प्र० 3: विधुत् विच्छेदन द्वारा धातुओं का शुद्धिकरण कैसे किया जाता है ?

Q. How are metals purified by electrolytic method?

उत्तर : विधुत विच्छेदन द्वारा धातु के शुद्धिकरण के लिए अशुद्ध धातु का एक मोटा एनोड तथा उसी धातु के शुद्ध रूप मे एक पतले चादर को कैथोड के रूप में इस्तेमाल किया जाता है। धातु के सॉल्ट का जलीय घोल एलेक्ट्रोलाइट के रूप में प्रयुक्त होता है।

जब विधुत धारा प्रवाहित की जाती है तो अशुद्ध धातु धीरे-धीरे गलता जाता है एवं धातु के आयन कैथोड पर जमा हो जाता है।

इसके फलस्वरूप ऐनोड पतला हो जाता है तथा कैथोड मोटा हो जाता है। ऐनोड पर ऑक्सीकरण तथा कैथोड पर अवकरण होता है। कैथोड पर एकत्र धातु करीब 99.99% शुद्ध होता है। अपद्रव्य ऐनोड छड़ के रूप में बर्तन की पेंदी में बैठ जाता है।

Ans. For the purification of metal in electrolytic method thick anode of impure metal and thin cathode of pure metal are made. The electrolyte is made of aqueous solution of salts of metals.

When electricity is passed through the solution, the impure metal begins to dissolve and metal ions in the solution deposits on cathode. As a result otf this, cathode becomes thick and anode becomes thin. Oxidation takes place at anode and reduction occurs at cathode. The impurities are settle as anode mud in the bottom of vessel.

प्र० 4: अंतर हैलोजन यौगिक क्या है ? BrF_{3} का संरचना ज्ञात करें।
Q. What are the inter halogen compounds? Determine the structure of BrF_{3}.

उत्तर : अंतर हैलोजन यौगिक - वैसे यौगिक जो दो विभिन्न हैलोजनों में सहसंयोजक बंधन से बने हैं, अंतर हैलोजन यौगिक कहलाता है। यह यौगिक विभिन्न हैलोजन के विधुत ॠणात्मक में अक्षर के कारण बनता है। बड़े आकार एवं कम विधुत ऋणात्मक वाला हैलोजन केन्द्रीय परमाणु रहता है। उदाहरण - $\mathrm{ClF}_{3}, \mathrm{BrF}_{5}, \mathrm{IF}_{7}$ आदि

अंतर हैलोजन यौगिक अपने घटक हैलोजन से अधिक क्रियाशील होते हैं क्योंकि $X-Y$ बंध $X-X$ बंध की अपेक्षा दुर्बल होता है। यह प्रबल आक्सीकारक होता है।

BrF_{3} का संरचना

प्रसंकरण $=\mathrm{sp}^{3} \mathrm{~d}$
चूंकि दो इलेक्ट्रॉन का एकल युग्म उपस्थित है अतः इसका आकार T -आकर का हो जाता है।

Ans. Interhalogen compounds - Those compounds which are made by different halogens with covalent bond, are called interhalogen compounds. This compound is formed due to difference in electronegativities of different halogens. Halogen with large size and low electronegativity is the central atom in compound.
$\mathrm{Ex}-\mathrm{ClF}_{3}, \mathrm{BrF}_{5}, \mathrm{IF}_{7}$ etc.
Inter halogen compound is more reactive than its component halogen. Because, the bond in $\mathrm{X}-\mathrm{Y}$ is more weaker than the bond in $\mathrm{X}-\mathrm{X}$. This compound is strong oxidising agent.

Structure of BrF_{3}

Hybridisation $=\mathrm{sp}^{3} \mathrm{~d}$

Two lone pair of electrons are present. Therefore, its shape is of T-shaped.

प्र० 5: $1^{\circ}, 2^{\circ}$ तथा 3° एल्कोहल का लुकास परीक्षण से कैसे अलग किया जाता है ?
Q. How will you separate $1^{\circ}, 2^{\circ}$ and 3° alcohol by Lucas test?

उत्तर : लुकास परीक्षण $-1^{\circ}, 2^{\circ}$ तथा 3° ऐल्कोहलों का परीक्षण लुकास अभिकर्मक से किया जाता है। लुकास अभिकर्मक सांद्र HCl तथा ZnCl_{2} का मिश्रण है। जब ऐल्कोहलों का लुकास अभिकर्मक के साथ प्रतिक्रिया हो जाती है तो 3° ऐल्कोहल तुरंत हो टरिबिडीटी उत्पन्न करता है।

$$
\mathrm{R}-\mathrm{OH}+\mathrm{HCl} \xrightarrow{\mathrm{ZnCl}_{2}} \mathrm{R}-\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}
$$

2° ऐल्कोहल पाँच मीनट के अंदर टरबिडीटी देता है। 1° ऐल्कोहल कमरा के तापमान पर टरबिडीटी नहीं उत्पन्न करता है।

Ans. LUCAS TEST $-1^{\circ}, 2^{\circ}$ and 3° alcohol are tested by Lucas reagent. Lucas reagent is the mixture of conc. HCl and ZnCl_{2}. When Lucas reagent is added to unknown alcohols, 3°-alcohol forms turbidity immediately.

$$
\mathrm{R}-\mathrm{OH}+\mathrm{HCl} \xrightarrow{\mathrm{ZnCl}_{2}} \mathrm{R}-\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}
$$

2° alcohol produces turbidity within five minutes.
1° alcohol does not produce turbidity at room temperature.

प्र० 6: निम्नलिखित में अंतर स्पष्ट करें-
(क) एसिटल्डिहाइड एवं किटोन
(ख) फिनॉल तथा एल्कोहल
Q. Differentiate the following-
(a) Acetaldehyde and Ketone
(b) Phenol and alcohol

उत्तर :

एसीटलडिहाईड	कीटोन (एसिटोन)
1. सूत्र $\mathrm{CH}_{3} \mathrm{CHO}$	O
	1. $\mathrm{CH}_{3}-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{CH}_{3}$
2. ऐल्कोहल से प्रतिक्रिया कर	2. कोई प्रतिक्रिया नहीं करता है।

एसीटल बनाता है।	
3. फेहलिंग घोल के साथ प्रतिक्रिया कर लाल अवक्षेप बनाता है।	3. कोई अवक्षेप नहीं बनाता है।
4. सांद्र के साथ प्रतिक्रिया कर रेजिन बनाता है।	4. सांद्र NaOH के साथ प्रतिक्रिया कर रेजिन नहीं बनाता है।

(ब)

फिनॉल	ऐल्कोहल (इथाइल ऐल्कोहल)		
1. सूत्र $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	1. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$		
2. यह FeCl_{3} के साथ			
प्रतिक्रिया कर बैंगनी रंग			
उत्पन्न करता है।			2. यह FeCl_{3} के साथ कोई
:---:			
प्रतिक्रिया नहीं करता है।			

Ans. (a)

Acetaldehyde	Ketone (Acetone)	
1. Formula $\mathrm{CH}_{3} \mathrm{CHO}$		
1. $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{3}$		

(b)

Phenol	Alcohol (Ethyl alcohol)
1. Formula $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	1. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
2. It produces violet colour with FeCl_{3}	2. It foes not react with FeCl_{3}
3. It is acidic in nature	3. It is neutral in nature

प्र० 7: 298 K पर अभिक्रिया के लिए साम्य स्थिरांक परिकलन कीजिए।
Q. Determine the equilibrium constant of following reaction-

$$
\begin{aligned}
& Z n(\mathrm{~s})+C u^{2+}(a q) \rightleftharpoons Z n^{2+}(a q)+C u(s) \\
& E_{Z n^{2+} / Z n}^{\circ}=-0.76 \mathrm{~V}, E_{C u^{2+} / C u}^{\circ}=+0.34 \mathrm{~V}
\end{aligned}
$$

उत्तर : हम जानते हैं कि

$$
\begin{aligned}
& \Delta G^{\circ}=-2.303 R T \log K_{C} \\
& \text { या } \\
& \text { या } n F E^{\circ}=-2.303 \times 8.314 \times 298 \log K_{C} \\
& n E^{\circ}=\frac{2.303 \times 8.314 \times 298}{96500} \log K_{C}=0.0591 \log K_{C} \\
& E^{\circ}=0.34-(0.76)=1.10 \mathrm{~V}, n=2 \\
& \log K_{C}
\end{aligned}=\frac{2 \times 1.1}{0.059}=37.29 \quad \therefore K_{C}=1.95 \times 10^{37} 7 .
$$

Ans. We know that

$$
\begin{array}{ll}
& \Delta G^{\circ}=-2.303 R T \log K_{C} \\
\text { or, } \quad & -n F E^{\circ}=-2.303 \times 8.314 \times 298 \log K_{C} \\
\text { or, } \quad n E^{\circ} & =\frac{2.303 \times 8.314 \times 298}{96500} \log K_{C}=0.0591 \log K_{C} \\
E^{\circ} & =0.34-(0.76)=1.10 \mathrm{~V}, n=2 \\
\log K_{C} & =\frac{2 \times 1.1}{0.059}=37.29 \quad \therefore K_{C}=1.95 \times 10^{37}
\end{array}
$$

प्र० 8: समांगी एवं विषमांगी उत्प्रेरण से क्या समझते हैं ? उदाहरण सहित समझावें।
Q. What are the homogeneous and heterogeneous catalysts ? Explain with examples.
उत्तर : समांगी उत्प्रेरण - वैसा उत्प्रेरण जिसमें अभिक्रियक एवं उत्प्रेरक समान प्रावस्था में हो, समांगी उत्प्रेरण कहलाता है।
जैसे $-\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{NO}(\mathrm{g})} 2 \mathrm{SO}_{3}(\mathrm{~g})$

$$
\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{CH}_{3} \mathrm{OH}(l) \xrightarrow{\mathrm{HCl}(a q)} \mathrm{CH}_{3} \mathrm{COOCH}_{3}(l)+\mathrm{H}_{2} \mathrm{O}(l)
$$

विषमांगी उत्प्रेरण - वैसा उत्प्रेरण जिसमें अभिक्रियक एवं उत्प्रेरक विभिन्न प्रावस्थाओं में हो, विषमांगी उत्प्रेरण कहलाता है।

$$
\begin{array}{r}
\text { जैसे }-\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Fe}(\mathrm{~s})} 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Ni}(s)} \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})
\end{array}
$$

Ans. Homogenous Catalysis - Those catalysis in which both reactants and catalysts are in same state, are called homogeneous catalysis.

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{NO}(g)} 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Heterogeneous Catalysis - Those catalysis in which of reactants and catalysts are in different states, are called heterogeneous catalysis.

$$
\begin{aligned}
\mathrm{Ex}-\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Fe}(s)} 2 \mathrm{NH}_{3}(g) \\
\mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2}(g) \xrightarrow{\mathrm{Ni}(s)} \mathrm{C}_{2} \mathrm{H}_{6}(g)
\end{aligned}
$$

प्र० 9: निम्नांकित का नाम लिखें।

Q. Write the IUPAC names of the following-
(a)

(b)

उत्तर : (क) 3 -ऑक्सोपेन्टेनोइक अम्ल
(ख) इथाइल इथेनोएट
Ans. (a) 3-oxopentanoic acid
(b) Ethylethanoate

प्र० 10:पौटेशियम परमैगनेट ऑक्सीकारक है। समीकरणों से स्पष्ट करें।
Q. Potassium permaganate is oxidising agent. Explain it with reactions.

उत्तर : पौटेशियम परमैग्नेट प्रबल ऑक्सीकारक है। यह अम्लीय, क्षारीय तथा उदासीन माध्यमों में ऑक्सीकारक के तरह व्यवहृत होता है।
अम्लीय माध्यम में,

$$
\left.\begin{array}{l}
2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+5[\mathrm{O}] \\
2 \mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{HI} \tag{2}\\
2 \mathrm{HI}+[\mathrm{CO}] \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}
\end{array}\right] \times 5 \mathrm{l}
$$

(1) और (2) को जोड़ने पर

$$
2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{KI} \rightarrow 6 \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{I}_{2}
$$

क्षारीय माध्यम में,

$$
2 \mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{KI} \rightarrow \mathrm{KIO}_{3}+2 \mathrm{KOH}+2 \mathrm{MnO}_{2}
$$

उदासीन माध्यम में,

$$
2 \mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+2 \mathrm{MnO}_{2}+3[\mathrm{O}]
$$

Ans. Potassium permaganate is strong oxidising agent. It is acting as oxidising agent in acidic basic and neutral medium.
Acidic medium-

$$
\begin{equation*}
2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+5[\mathrm{O}] \tag{1}
\end{equation*}
$$

$$
\left.\begin{array}{l}
2 \mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{HI} \tag{2}\\
2 \mathrm{HI}+[\mathrm{CO}] \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}
\end{array}\right] \times 5
$$

On adding (1) and (2)

$$
2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{KI} \rightarrow 6 \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{I}_{2}
$$

Alkaline medium

$$
2 \mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{KI} \rightarrow \mathrm{KIO}_{3}+2 \mathrm{KOH}+2 \mathrm{MnO}_{2}
$$

Neutral medium

$$
2 \mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+2 \mathrm{MnO}_{2}+3[\mathrm{O}]
$$

प्र० 11:प्रथम कोटि अभिक्रिया का विशिष्ट अभिक्रिया वेग स्थिरांक $2.3 \times 10^{-3} \mathbf{s e c}^{-1}$ है। इसका औसत आयु एवं अर्द्ध आयु ज्ञात करें।
Q. The specific rate constant of first order reaction is $2.3 \times 10^{-3} \mathbf{s e c}^{-1}$. Determine its average life and half life period.
उत्तर : हम जानतें हैं कि

$$
\frac{t_{1}}{2}=\frac{0.693}{\mathrm{~K}} \text { or, } \frac{t_{1}}{2}=\frac{0.693}{2.31 \times 10^{-3}}=300 \text { सेकण्ड }
$$

औसत आयु $=1.44 \times \frac{t_{1}}{2}$

$$
=1.44 \times 300=433 \mathrm{sec}
$$

Ans. We know that

$$
\frac{t_{1}}{2}=\frac{0.693}{\mathrm{~K}} \text { or, } \frac{t_{1}}{2}=\frac{0.693}{2.31 \times 10^{-3}}=300 \text { सेकण्ड }
$$

Average life $=1.44 \times \frac{t_{1}}{2}$

$$
=1.44 \times 300=433 \text { सेकण्ड }
$$

दीर्घ उत्तरीय प्रश्नः-

Long Questions :-

प्र० 1: (क) ठोस पदार्थो के चुम्बकीय गुण से क्या समझते हैं ?
(ख) निम्नलिखित को समझावें-
(1) अनुचुम्बकत्व
(2) प्रतिलौहचुम्बकत्व
(3) फेरीचुम्बक्त्व
(4) प्रतिचुम्बकत्व
Q. (a) What do you mean by magnetic properties of solid substance.
(b) Explain the followings-
(i) Paramagnetism
(ii) Anti Ferromagnetism
(iii) Ferrimagnetism
(iv) Diamagnetism

उत्तर : (क) ठोस पदार्थ का चुम्बकीय गुण - पदार्थ का चुम्बकीय गुण उसके चुम्बकीय आघूर्ण पर निर्भर करता है। पदार्थ परमाणु से बना होता है एवं परमाणु में नाभिक के चारों ओर इलेक्ट्रॉन घूमता रहता है। घुमता हुआ इलेक्ट्रॉन एक छौटा विधुत लूप माना जाता है जो चुम्बकीय क्षेत्र उत्पन्न करता है। इसी कारण ठोस पदार्थ में चुम्बकीय गुण आ जाता है।
(ख) (1) अनुचुम्बकत्व - अनुचुमब्कत्व पदार्थ वह होता है जिसमें अयुग्मित इलेक्ट्रॉन उपसित हो। यह पदार्थ चुम्बकीय क्षेत्र की ओर दुर्बल रूप से आकर्षित होते हैं।
जैसे - $\mathrm{O}_{2}, \mathrm{Cu}^{2+}, \mathrm{Fe}^{3+}$ आदि
(2) प्रतिलौहचुम्बकत्व - वैसा पदार्थ जिसके डोमेन एक-दूसरे के विपरीत अभिविन्यासित होते हैं तथा एक-दूसरे के चुम्बकीय आघूर्ण को निरस्त करता है, प्रतिलौहचुम्बकत्व कहलाता है।
जैसे $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$
MnO
(3) फेरीचुम्बकत्व - वैसा पदार्थ जिनके डोमेनों के चुम्बकीय आघूर्ण समानांतर एवं प्रति समांतर दिशाओं में असमान होता है, फेरीचुम्बकत्व कहलाता है। यह चुम्बकीय क्षेत्र द्वारा दुर्बल रूप से आकर्षित होता है।
जैसे $-\begin{gathered}\uparrow \downarrow \uparrow \uparrow \uparrow \downarrow \\ \mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{MgFe}_{2} \mathrm{O}_{3}, \mathrm{ZnFe}_{2} \mathrm{O}_{3} \text { etc. }\end{gathered}$ आदि।
(4) प्रतिचुम्बकत्व - वह पदार्थ जिसमें युग्मित इलेक्ट्रॉन उपस्थित हो, प्रतिचुम्बकत्व कहलाता है। यह चुम्बकीय क्षेत्र द्वारा निष्कर्षित हो जाता है। यह पदार्थ चुम्बकीय गुण नहीं दिखाता है। जैसे $-\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{Zn}^{2+}, \mathrm{Sc}^{3+}$ आदि।
Ans. (a) Magnetic properties of solid - The magnetic properties of a substance depend upon magnetic moment of the substance. The matter is made of atoms. In atom, there is nucleus and electrons are revolving round the nucleus. The moving electron is considered as small electrid loop. This small electric loop produces magnetic field. This is the reason that there creates magnetic properties in solid substances.
(b) (i) Paramagnetism - That substance is called paramagnetic substance in which there is the presence of unpaired electrons. Such substances are weekly attracted by magnets.

$$
\mathrm{Ex}-\mathrm{O}_{2}, \mathrm{Cu}^{2+}, \mathrm{Fe}^{3+} \text { etc. }
$$

(ii) Antiferromagnetism - Those substances whose domains are oriented in opposite directions equally are called antiferromagnetic substances. Due to opposite orientations, mangnetic moments are cancelled.

$$
\mathbf{E x}-\begin{aligned}
& \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\
& \mathrm{MnO}
\end{aligned}
$$

(iii) Ferrimagnetism - Those substances whose domains are orientated in parallel and antiparallel directions in unequal number are called ferrimagnetism. These substances are attracted weakly by magnetic fields.

$$
\mathbf{E x}-\begin{gathered}
\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\
\mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{MgFe}_{2} \mathrm{O}_{3}, \mathrm{ZnFe}_{2} \mathrm{O}_{3} \text { etc. }
\end{gathered}
$$

(iv) Diamagnetism - Those substances in which pair electrons are present, are called diamagnetic substances. Those substances are repelled by magnets. $\mathbf{E x}-\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{Zn}^{2+}, \mathrm{Sc}^{3+}$ etc.

प्र० 2: (क) किसी डैनियल सेल के सेल विभव का मान ज्ञात करने के लिए नेर्स्ट्ट समीकरण को दर्शावें।
(ख) यदि एक प्रतिक्रिया का वेग स्थिरांक 700 K पर $2 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{sec}^{-1}$ तथा 800 K पर 32 $\mathrm{mol} \mathrm{L}^{-1} \sec ^{-1}$ है तो सक्रियण ऊर्जा ज्ञात करो।
Q. (a) Explain Nernst equation for the determination of electrode potential in a Dariel cell.
(b) The rate constants of a reaction at 700 K is $2 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{sec}^{-1}$ and at 800 K , it is $32 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{sec}^{-1}$. Calculate activation energy.
उत्तर : नेर्स्ट्ट समीकरण - किसी डैनियल सेल में रिडॉक्स प्रतिक्रिया होता है।

माना कि एक रिडॉक्स प्रतिक्रिया इस रूप में है-

$$
\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{~L}+\mathrm{M}
$$

थर्मोडायनेमिक्स से उपर्युक्त प्रतिक्रिया के लिए,

$$
\begin{equation*}
\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \frac{[\mathrm{~L}][\mathrm{M}]}{[\mathrm{A}][\mathrm{B}]} \tag{1}
\end{equation*}
$$

हम जानते हैं कि

$$
\Delta \mathrm{G}=-\mathrm{nFE}, \quad \Delta \mathrm{G}^{\circ}=-\mathrm{nFE}^{\circ}
$$

जहाँ $\mathrm{n}=$ इलेक्ट्रॉनों की संख्या जो प्रतिक्रिया में भो लेता है। E तथा E° किसी अवस्था एवं मानक अवस्था में सेल विभव है।
इन मानों को समीकरण (1) में रखने पर
Hence, equation (1) becomes-

$$
\begin{align*}
-\mathrm{nFE} & =-\mathrm{nFE}^{\circ}+2.303 \mathrm{RT} \log \frac{[\mathrm{~L}][\mathrm{M}]}{[\mathrm{A}][\mathrm{B}]} \\
\mathrm{E} & =\mathrm{E}^{\circ}-\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log \frac{[\mathrm{~L}][\mathrm{M}]}{[\mathrm{A}][\mathrm{B}]} \tag{2}
\end{align*}
$$

या
समीकरण (2) नेन्स्अ समीकरण को दर्शाता है।
(ख) हम जानते हैं कि

$$
\begin{aligned}
& \log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\mathrm{Ea}}{2.303 \mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right) \\
& \text { यहाँ, } \mathrm{K}_{1}=2 \mathrm{molL}^{-1} \mathrm{sec}^{-1}, \mathrm{~K}_{2}=32 \mathrm{molL}^{-1} \mathrm{sec}^{-1} \\
& \mathrm{~T}_{1}=700 \mathrm{~K}, \mathrm{~T}_{2}=800 \mathrm{~K}, \mathrm{Ea}=\text { सक्रियण ऊर्जा } \\
& \therefore \quad \log \frac{32}{2}=\frac{\mathrm{Ea}}{2.303 \times 8.314}\left(\frac{1}{700}-\frac{1}{800}\right) \\
& \log 2^{4}=\frac{E a}{2.303 \times 8.314}\left(\frac{800-700}{700 \times 800}\right) \\
& \text { or, } 4 \times 0.301=\frac{E a}{2.303 \times 8.314} \times \frac{100}{700 \times 800} \\
& \therefore \mathrm{Ea}=4 \times 0.301 \times 2.303 \times 8.314 \times 7 \times 800 \text { Joule } \\
& =129.11 \mathrm{KJ} / \mathrm{mol}
\end{aligned}
$$

Ans. (a) Nernst equation - In Daniel cell, the redox reaction take place.
Consider a redox reaction as-

$$
\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{~L}+\mathrm{M}
$$

For this reaction, thermodynamically,

$$
\begin{equation*}
\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \frac{[\mathrm{~L}][\mathrm{M}]}{[\mathrm{A}][\mathrm{B}]} \tag{1}
\end{equation*}
$$

We know that

$$
\Delta \mathrm{G}=-\mathrm{nFE}, \quad \Delta \mathrm{G}^{\circ}=-\mathrm{nFE}{ }^{\circ}
$$

Where $\mathrm{n}=$ Number of electrons involved in reaction, E and E° are electrode potentials in any state and in standard state.

Hence, equation (1) becomes-

$$
\begin{align*}
-\mathrm{nFE} & =-\mathrm{nFE}^{\circ}+2.303 \mathrm{RT} \log \frac{[\mathrm{~L}][\mathrm{M}]}{[\mathrm{A}][\mathrm{B}]} \\
\text { or, } \quad \mathrm{E} & =\mathrm{E}^{\circ}-\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log \frac{[\mathrm{~L}][\mathrm{M}]}{[\mathrm{A}][\mathrm{B}]} \tag{2}
\end{align*}
$$

The equation (2) represents Nernst equation.
(b) We know that

$$
\begin{aligned}
& \log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\mathrm{Ea}}{2.303 \mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right) \\
& \text { Here, } \mathrm{K}_{1}=2 \mathrm{molL}^{-1} \mathrm{sec}^{-1}, \mathrm{~K}_{2}=32 \mathrm{molL}^{-1} \mathrm{sec}^{-1} \\
& \qquad \mathrm{~T}_{1}=700 \mathrm{~K}, \mathrm{~T}_{2}=800 \mathrm{~K}, \mathrm{Ea}=\text { Activation energy } \\
& \therefore \quad \log \frac{32}{2}=\frac{\mathrm{Ea}}{2.303 \times 8.314}\left(\frac{1}{700}-\frac{1}{800}\right) \\
& \qquad \log 2^{4}=\frac{\mathrm{Ea}}{2.303 \times 8.314}\left(\frac{800-700}{700 \times 800}\right) \\
& \text { or, } 4 \times 0.301=\frac{\mathrm{Ea}}{2.303 \times 8.314} \times \frac{100}{700 \times 800} \\
& \therefore \quad \mathrm{Ea}=4 \times 0.301 \times 2.303 \times 8.314 \times 7 \times 800 \mathrm{Joule} \\
& \quad=129.11 \mathrm{KJ} / \mathrm{mol}
\end{aligned}
$$

प्र० 3: निम्नांकित को परिवर्तित करें-
(क) इथाइल अल्कोहल से ऐसीटोन
(ख) इथाइल ब्रोमाइड से प्रोपायोनिक अम्ल
(ग) मिथाइल एमीन से इथाइल एमीन
(घ) एसीटोन से आयोडोफार्म
(ड़) मिथाइल एल्कोहल से इथाइल एल्कोहल
Q. Convert the followings-
(a) Acetone from ethylalcohol
(b) Propionic acid from ethylbromide
(c) Ethylamine from methylamine
(d) Iodoform from acetone
(e) Ethylalcohol from methylalcohol

Ans. (a) Acetone from ethylalcohol -

(b) Propionic acid from ehtylbromide

(c) Ethylamine from methylamine

(d)

Iodoform from acetone

(e)

Ethyl alcohol from methyl alcohol

$$
\begin{aligned}
\mathrm{CH}_{3} \mathrm{OH} \xrightarrow{\mathrm{HBr}} \mathrm{CH}_{3} \mathrm{Br} \xrightarrow{\mathrm{Na} / \text { Ether }} \mathrm{C}_{2} \mathrm{H}_{6} \xrightarrow[\text { hv }]{\mathrm{Cl}_{2}} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} \\
\xrightarrow{\text { AgoH }} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
\end{aligned}
$$

प्र० 4: क्या होता है जब-
(क) फिनॉल को $\mathbf{Z n}$ चूर्ण के साथ स्त्रावित किया जाता है।
(ख) इथाइल एल्कोहल का डिहाइड्रेशन किया जाता है।
(ग) बेंजिन की प्रतिक्रिया AlCl_{3} की उपसितित में $\mathrm{CH}_{3} \mathrm{Cl}$ से करायी जाती है।
(घ) एसीटिक अम्ल को इथाइल एल्कोहल के साथ प्रतिक्रिया की जाती है।
(ड़) इथाइल एमीन को $\mathbf{H N O}_{\mathbf{2}}$ के साथ गर्म किया जाता है।
Q. What happens when-
(a) Phenol is distilled with zinc dust.
(b) Dehydration of ethylalcohol is done.
(c) Benzne is reacted with $\mathrm{CH}_{3} \mathbf{C l}$ in presence of AlCl_{3}.
(d) Acetic acid is reacted with ethylalcohol.
(e) Ethylamine is reacted with HNO_{2}.

उत्तर : (क) फिनॉल को Zn चूर्ण के साथ स्त्रावित करने पर बेंजिन बनता है।

(ख) इथाइल एल्कोहल का डिहाइड्रेशन करने पर इथीन प्राप्त होता है।

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\text { संद्र } \mathrm{H}_{2} \mathrm{SO}_{4}} \underset{\substack{\text { इथीन } \\ \text { इथ }}}{\mathrm{C}_{2} \mathrm{H}_{1}}+\mathrm{H}_{2} \mathrm{O}
$$

(ग) बंजिन की प्रतिक्रिया $\mathrm{CH}_{3} \mathrm{Cl}$ से AlCl_{3} की उपस्थिति में जब की जाती है तो टॉल्वीन बनता है।

$$
\text { (0) }+\mathrm{CH}_{3} \mathrm{Cl} \xrightarrow{\mathrm{ACl}_{3}} \mathrm{O}^{\mathrm{CH}_{3}}+\mathrm{HCl}
$$

(घ) एसीटिक अम्ल को इथाइल एल्कोहल के साथ प्रतिक्रिया करने पर इथाइल ऐसीटेट (एस्टर) प्राप्त होता है।

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}
$$

(ड़) इथाइल एमीन को HNO_{2} के साथ गर्म करने पर इथाइल एल्कोहल प्राप्त होता है।

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{HNO}_{2} \longrightarrow \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Ans. (a) When phenol is distilled with Zinc dust, benzene is formed.

(b)

When ethylalcohol is dehydrated, ethene is formed.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

(c) When benzene is freacted with $\mathrm{CH}_{3} \mathrm{Cl}$ in presence of AlCl_{3}, toulene is formed.

(d) When acetic acid is reacted with ethylalcohol, ehtylacetate (ester) is formed.

(e)

When ethylamine is reacted with HNO_{2} ethyl alcohol is formed $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{HNO}_{2} \longrightarrow \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$

प्र० 5: निम्नलिखित की संरचनायें लिखें।
(अ) BrF_{5}
(ब) XeF_{4}
(स) SF_{4}
(द) $\mathbf{N H}_{3}$
(ई0) $\mathbf{I F}_{7}$
Q. Write the structures of the following
(a) BrF_{5}
(b) XeF_{4}
(c) SF_{4}
(d) NH_{3}
(e) IF_{7}

उत्तर : (क) BrF_{5}
प्रसंकरण $=\mathrm{sp}^{3} \mathrm{~d}^{2}$
एक इलेक्ट्रॉन का एकल युग्म है। इसलिए संरचना डिस्टोरटेड ऑक्टारहेड्रल है।

(b) XeF_{4}

प्रसंकरण $=\mathrm{sp}^{3} \mathrm{~d}^{2}$
दो इलेक्ट्रॉन का एकल युग्म उपस्थित है। अतः संरचना स्काइर प्लेनर है।

(c) SF_{4}

प्रसंकरण $=\mathrm{sp}^{3} \mathrm{~d}$
एक इलेक्ट्रॉन का एकल युग्म है। अतः संरचना (See-saw) सी-साऊ है।

(d) $\quad \mathrm{NH}_{3}$

प्रसंकरण $=\mathrm{sp}^{3}$
एक इलेक्ट्रॉन का एकल युग्म है। अत: संरचना पिरामिडल है।

(e) IF_{7}

प्रसंकरण $=\mathrm{sp}^{3} \mathrm{~d}^{3}$
संरचना पेन्टागोनल वायपिरामिडल है।

Ans. (a) BrF_{5}
Hybridisation $=\mathrm{sp}^{3} \mathrm{~d}^{2}$
One lone pair of electron is present. Therefore, the structure is distored octahedral.

(b) XeF_{4}

Hybridisation $=\mathrm{sp}^{3} \mathrm{~d}^{2}$
Two lonepair of electrons are present. Therefore, the structure is square planar.

(c) SF_{4}

Hybridisation $=\mathrm{sp}^{3} \mathrm{~d}$
One lonepair of electron is present. Therefore, the structure is see-saw.

(d) NH_{3}

Hybridisation $=\mathrm{sp}^{3}$
One lonepair of electrons is present. So, the structure is pyramidal.

(e) IF_{7}

Hybridisation $=\mathrm{sp}^{3} \mathrm{~d}^{3}$
The structure is pentagonal bipyramidal.

CHEMISRY (Set-2)

सही उत्तर चुने:-

Choose the correct answer :- (1 mark each)

1. NaCl क्रिस्टल की संरचना होती है-
(क) पिण्ड-केन्द्रित (ख) फलक केन्द्रित
(ग) चतुष्कोणीय
(घ) सरल घनाकार

NaCl crystal structure is-
(a) Body centred
(b) Face centred
(c) Tetragonal
(d) Simple cubic
2. घनाकार संरचना में पिंड केंद्रित परमाणु की समन्वयन संख्या होती है?
(क) 4
(ख) 8
(ग) 9
(घ) 12

In body centred cubic crystal structure co-ordinate number of atom is-
(b) 4
(b) 8
(c) 9
(d) 12
3. मूल क्रिस्टल तंत्रों की संख्या होती है-
(क) 4
(ख) 7
(ग) 14
(घ) 8

Number of basic types of crystals are-
(b)
4
(b) 7
(c) 14
(d) 8
4. भौतिक अधिशोषण की दर किसके द्वारा बढ़ता है ?
(क) तापक्रम घटाकर(ख) तापक्रम बढ़ाकर
(ग) दाब घटाकर
(घ) सतह क्षेत्रफल घटाकर

Which of the following increases the rate of physical adsorption-
(b)
Decrease in temperature
(b) Increase in temperature
(c)
Decrease in pressure
(d) Decrease in surface are
5. वेग स्थिरांक (K) का मान निर्भर करता है-
(क) प्रतिकारकों की सांद्रता पर
(ख) प्रतिफलों की सांद्रता पर
(ग) आयतन पर
(घ) तापक्रम पर

The value of velocity constant (K) of reaction depends on-
(a) Concentration of Reactants
(b) Concentration of products
(c) Volume
(d) Temperature
6. लोहा एक-
(क) अचुम्बकीय पदार्थ है
(ख) प्रतिचुम्बकीय पदार्थ है
(ग) फेरोचुम्बकीय पदार्थ है
(घ) फेरीचुम्बकीय पदार्थ है

Iron is a-
(a) Paramagnetic substance
(b) Diamagnetic substance
(c) Ferromagnetic substance
(d) Ferrimagnetic substance
7. आरहीनियस का समीकरण है-
(क) $K=A \cdot e^{-E a / R T}$
(ख) $K=e^{-E a / R T}$
(ग) $K=A e^{E a / R T}$
(घ) $K=e^{E a / R T}$

Arrhenius equation is-
(b)
$K=A \cdot e^{-E a / R T}$
(b) $K=e^{-E a / R T}$
(c) $K=A e^{E a / R T}$
(d) $K=e^{E a / R T}$
8. निम्नलिखित में से कौन colligative property नहीं है-
(क) वाष्प-दाब
(ख) परासरण-दाब
(ग) क्वथनांक में उन्नयन
(घ) टिभांक में अवनमन

Which of the following is not a collegative property?
(c)
Vapour pressure
(b) Osmotic pressure
(d)
Elevation in boiling point
(d) Depression in freezing point
9. विधुत अपघटन का उपयोग होता है-
(क) विधुत शोधन में
(ख) विधुत लेपन में
(ग) (क) तथा (ख) दोनों
(घ) इनमें से कोई नहीं

Electrolysis is used in-
(b)
Electrorefining
(b) Electroplating
(c)
Both (a) and (b)
(d) None of these
10. जल में साबुन के कोलायडी कण होते हैं-
(क) ॠणावेशित
(ख) अनावेशित
(ग) धनावेशित
(घ) ॠणावेशित एवं धनावेशित दोनों

Colloidal particles of soap in water is-
(b)
Negatively charged
(b) Neutral
(c) Positively charged
(d) Negatively and positively charged
11. दूध है-
(क) तेल में वसाओं का डिसपर्सन
(ख) जल में वसाओं का डिसपर्सन
(ग) वसाओं में जल का डिसपर्सन
(घ) तेल में जल का डिसपर्सन
Milk is-
(b)
Dispersion of fats in oil
(b) Dispersion of fats in
water
(c)
Dispersion of water in fat
(d) Dispersion of water in
oil
12. CHI_{3} का पूर्तिरोधी प्रभाव है-
(क) CHI_{3} के कारण
(ख) मुक्त आयोडीन के कारण
(ग) आयोडीन आयनों के कारण
(घ) आयोडीन और CHI_{3} दोनों के कारण

The antiseptic action of CHI_{3} is due to 7
(b)
CHI_{3}
(b) Liberation of free
iodine
(c)
Iodide ions
(d) Iodine and CHI_{3} both
13. निम्नलिखित में से कौन एक सेकेण्डरी एल्किल हैलाईड है ?
(क) आईसोब्यूटाईल क्लोराईड
(ख) आईसो पेन्टाईल क्लोराईड
(ग) नियो-पेन्टाईल क्लोराईड
(घ) आईसो प्रोपाईल क्लोराईड

Which of the following is a secondary alkyl halide ?
(b)
Isobutyl chloride
(b) Isopentyl chloride
(c) Neopentyl chloride
(d) Isopropyl chloride
14. $\mathrm{CF}_{2} \mathrm{Cl}_{2}$ का उपयोग होता है, एक-
(क) पूर्तिरोधी के रूप में
(ख) कीटनाशी के रूप में
(ग) पीड़ाहारी के रूप में
(घ) प्रशीतक के रूप में
$\mathrm{CF}_{2} \mathrm{Cl}_{2}$ is used as a/an-
(b)
Antiseptic
(b) Insecticide
(c) Analgesic
(d)
Refrigerant
15. एल्किल हैलाईड को एल्कोहॉल में बदला जाता है-
(क) Elimination के द्वारा
(ख) Dehydrogenation के द्वारा
(ग) Addition के द्वारा
(घ) substitution के द्वारा

The alkyl halide is converted into an alcohol by
(b)
Elimination
(b) Dehydrogenation
(c) Addition(d) Substitution
16. ल्यूकस परीक्षण का उपयोग होता है-
(क) ऐमीनो के विभेद में
(ख) ईथरों के विभेद में
(ग) एल्कोहॉलों के विभेद में
(घ) एल्किल हैलाईडो के विभेद में

Lucas test is used to distinguish-
(b)
Amine
(b) Ethers
(c) Alcohols(d)
Alkyls
halides
17. फेहलिंग परीक्षण किसके लिए धनात्मक होगा ?
(क) इसीटल्डिहाईड
(ख) ऐसीटोन
(ग) ईथर
(घ) ऐमीन

Fehling test is positive for
(b)
Acetaldehyde
(b) Acetone
(c) Ether
(d) Amine
18. निम्नलिखित में से किसमें एलडॉल संघनन नहीं होगा ?
(क) एसीटल्डिहाईड
(ख) प्रोपेनल्डिहाईड
(ग) बेंजल्डिहाईड
(घ) ट्राईड्यूटेरो एसीटल्डिहाईड

Which of the following will not undergo aldol condensation-
(b)
Acetaldehyde
(b) Propanaldehyde
(c) Benzaldehyde
(d) Trideutero acetaldehyde
19. कार्बोहाइड्रेट का सामान्य सूत्र है-
(क) $\mathrm{C}_{x}\left(\mathrm{H}_{2} \mathrm{O}\right) y$
(ख) $\mathrm{C}_{x}\left(\mathrm{H}_{2}\right) y$
(ग) $(\mathrm{CO})_{x}\left(\mathrm{H}_{2}\right)_{y}$
(घ) $\left(\mathrm{CO}_{2}\right)_{x}\left(\mathrm{H}_{2} \mathrm{O}\right)_{y}$

The genral formula of carbohydrate is-
(b)
$\mathrm{C}_{x}\left(\mathrm{H}_{2} \mathrm{O}\right) y$
(b) $\mathrm{C}_{x}\left(\mathrm{H}_{2}\right) y$
(c) $(\mathrm{CO})_{x}\left(\mathrm{H}_{2}\right)_{y}$
(d) $\left(\mathrm{CO}_{2}\right)_{x}\left(\mathrm{H}_{2} \mathrm{O}\right)_{y}$
20. ग्लूकोज की वलय संरचना में काईरल कार्बन परमाणुओं की संख्या है-
(क) 2
(ख) 3
(ग) 4
(घ) 5

The number of chiral C- atom in cyclic structure of glucose is-
(b)
2
(b) 3
(c) 4
(d) 5
21. किस ग्रुप के तत्वों को संक्रमण तत्व कहा जाता है ?
(क) p -ब्लॉक
(ख) S -ब्लॉक
(ग) d-ब्लॉक
(घ) f-ब्लॉक

Which block of elements are known as transition elements ?
(b)
p-block
(b) s-block
(c) d-block
(d) f-block
22. सोडियम आवर्त सारणी में किस ग्रुप का सदस्य है ?
(क) ग्रुप-IA
(ख) ग्रुप-IIA
(ग) ग्रुप-IVA
(घ) इनमें से कोई नहीं

Sodium is a member of which group in periodic table?
(b)
Group-IA
(b) Group-IIA
(c) Group-IVA
(d) None of these
23. XeF_{4} का आकार होता है-
(क) चतुष्फलकीय
(ख) स्क्वायर प्लेनर
(ग) पिरामिडल
(घ) लिनियर

The shape of XeF_{4} is-
(b)
Tetrahedral
(b) Square planar
(c) Pyramidal
(d) LInear
24. निम्नलिखित में से कौन-सी धातु प्रकृति में मुक्त अवस्था में पायी जाती है ?
(क) सोडियम
(ख) लोहा
(ग) जिंक
(घ) सोना

Which one of the following elements is found in free state in nature-
(f)
Sodium
(b) Iron
(c) Zince
(d) Gold
25. निम्न में कौन क्षारीय भूमिज तत्व है ?
(क) कार्बन
(ख) कैल्शियम
(ग) जिंक
(घ) लोहा

Which one of the following is an alkaline earth element?
(f)
Carbon
(b) Calcium
(c) Zinc
(d) Iron
26. निम्नलिखित में कौन-सा धातु साधारण तापक्रम पर द्रव होता है ?
(क) जिंक
(ख) पारा
(ग) सोडियम
(घ) जल

Which one of the metal is liquid at normal temperature?
(f)
Zinc
(b) Mercury
(g)
Sodium
(d) Water
27. $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ का IUPAC का नाम है-
(क) इथिलिन ग्लाइकॉल
(ख) इथेन 1, 2-डाईऑल
(ग) इथिल-1,2-डाईऑल
(घ) इथिलिन डाई ऑल

IUPAC name of $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ is
(f)
Ethylene glycol
(b) Ethane-1, 2-diol
(c) Ethyl-1, 2-diol
(d) Ethylene diol
28. प्रतिरक्षी सॉल होते हैं-
(क) विलायक स्नेही
(ख) विलायक रोधी
(ग) (क) तथा (ख) दोनों
(घ) इनमें से कोई नहीं

Protective sols are-
(g)
Lyophilic
(b) Lyophobic
(c) Both (a) and (b)
(d) None of these

SOLUTION

(1)	(b)	(2)	(b)	(3)	(b)	(4)	(a)	(5)	(d)
(6)	(c)	(7)	(a)	(8)	(a)	(9)	(c)	(10)	(a)
(11)	(b)	(12)	(b)	(13)	(d)	(14)	(d)	(15)	(d)
(16)	(c)	(17)	(a)	(18)	(c)	(19)	(a)	(20)	(c)
(21)	(c)	(22)	(a)	(23)	(b)	(24)	(d)	(25)	(b)
(26)	(b)	(27)	(b)	(28)	(a)				

लघु उत्तरीय प्रश्न:-

Very Short Questions :- (2 marks each)
प्र० 1.: किसी अभिक्रिया की आण्विकता से आप क्या समझते हैं ? उचित उदाहरण द्वारा वर्णन करें।
Q. What do you meant about molecubility of a reaction. Explain with suitable example.
उत्तर : प्राथमिक अभिक्रिया में भाग लेने वाली स्पीशीज (परमाणु, आयन, अथवा अणु) जो कि एक साथ संघट्ट के फलस्वरूप रासायनिक अभिक्रिया करती है, कि संख्या को अभिक्रिया की आण्विकता कहते हैं।

जैसे-

$$
\begin{array}{ll}
\mathrm{NH}_{4} \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O} & \text { एक अणुक अभिक्रिया } \\
1 & \\
2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2} & \text { द्विअणुक अभिक्रिया } \\
2 & \\
2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} & \text { त्रि-अणुक अभिक्रिया } \\
(2+1=3) &
\end{array}
$$

Ans. The no. of reacting species (atoms ions or molecules) taking part in an elementary reaction, which most collide simultaneously in order to bring about a chemical reaction is called molecularity of a reaction.

For example:-

$\mathrm{NH}_{4} \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	Unimolecular reaction
1	
$2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2}$	Bimolecular reaction
2	
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$	Trimolecular reaction
$(2+1=3)$	

प्र० 2.: Co-ordination number से आप क्या समझते हैं ? cep तथा bcc में co-ordination संख्या बताये।
Q. What is meant by the term co-ordination number ? Find the co-ordination number is cep and bcc.
उत्तर : Co-ordination number वह संख्या है जो बतलाता है कि किसी पदार्थ की संरचना में एक अवयवी कण के निकट और कितने अन्य कण अवस्थित है।

Co-ordination number in ccp $=12$
Co-ordination number in bcc $=08$
Ans. It is defined as the number of nearest neighbours of a particle in a close packed structure.

Co-ordination number in ccp $=12$
Co-ordination number in bcc $=08$

प्र० 3.: इमलशन क्या है ? यह कितने प्रकार का होता है ?

Q. What is emulsion? How many types of emulsion.

उत्तर : दो अघुलनशील तरल के कोलाईड घोल को इमलशन कहते हैं, जिसमें विभक्त बूँदे दूसरे तरल माध्यम में छितरा रहता है। यह दो प्रकार के होता है।
(क) जल में तेल का इमलशन - यहाँ dispersed phase तेल तथा dispersion medium जल होता है। जैसे-दूध (इसमें द्रव वसा पानी dispersed में होता है।)
(ख) तेल में जल का इमलशन - यहाँ dispersed phase जल तथा dispersion medium तेल होता है। जैसे - बटर (यहाँ जल वसा में dispersed होता है।)

Ans. Emulsions are colloidal solution of two immicible liquids in which dispersion of tinely divided droplets in another liquid occurs. Emulsion have been classified into two types-
(i) Oil in water emulsion - In this dispersed phase is oil while the dispersion medium is water.

Example - Milk (liquid fat is dispersed in water)
(ii) Water in oil Emulsion - In this dispersed phase is water dispersion medium is oil. Example- Butter (water is dispersed into oil)

प्र० 4.: जल के हिमांक अवनमन की गणना करें यदि 250 ग्राम पानी में 10 ग्राम $\mathbf{C H}_{3} \mathbf{C H}_{2} \underset{\text { । }}{\mathbf{C H C O O H}}$ की मात्रा विलेय किया जाये। $\left[K_{\boldsymbol{b}}=1.4 \times 10^{-3}\right.$, $\left.\boldsymbol{K}_{\boldsymbol{f}}=1.86 \mathrm{~K} . \mathrm{Kg} / \mathrm{mole}\right]$
Q. Calculate depression in the freezing point of water when 10 gm of $\mathbf{C H}_{3} \mathrm{CH}_{2} \mathbf{C H C O O H}$ is added to 250 gm of water.

$$
\left[\boldsymbol{K}_{\boldsymbol{b}}=1.4 \times 10^{-3}, \boldsymbol{K}_{\boldsymbol{f}}=1.86 \mathrm{~K} . \mathrm{Kg} / \mathrm{mole}\right]
$$

उत्तर : हम जानते हैं कि

$$
\begin{aligned}
& \Delta T_{f}=\frac{1000 \times T_{f} \times W_{2}}{m_{2} \times W_{1}} \\
& W_{2}= 10 \text { ग्राम, } W_{1}=250 \text { ग्राम, } m_{2}=122.5 \text { ग्राम, } K_{f}=1.86 \text { कि. कि॰ग्गा०/मोल } \\
& \Delta T_{f}=\frac{1000 \times 1.86 \times 10}{250 \times 122.5} \\
& \Delta T_{f}=0.607^{\circ} \mathrm{C}
\end{aligned}
$$

Ans. We know that

$$
\begin{aligned}
& \Delta T_{f}=\frac{1000 \times T_{f} \times W_{2}}{m_{2} \times W_{1}} \\
& W_{2}=10 \mathrm{gm}, W_{1}=250 \mathrm{gm}, m_{2}=122.5 \mathrm{gm}, K_{f}=1.86 \mathrm{~K} . \mathrm{Kg} / \mathrm{mole} \\
& \Delta T_{f}=\frac{1000 \times 1.86 \times 10}{250 \times 122.5} \\
& \Delta T_{f}=0.607^{\circ} \mathrm{C}
\end{aligned}
$$

प्र० 5.: कॉपर के दो अयस्को का नाम लिखें ?
Q. Write name of two orres of copper.

उत्तर : कॉपर के दो अयस्को का नाम:-
(क) कॉपर पायराइट्स - CuFeS_{2}
(ख) एजुराइट $-2 \mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$
Ans. The name of two ores of copper:-
(a)
Copper Pyrites - CuFeS_{2}
(b)
Azurite $-2 \mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$

प्र० 6.: पेपटाइजेशन से क्या समझते है ?

Q. What is meant by peptization.

उत्तर : ताजा अवक्षेपित पदार्थ में उपयुक्त विधुत अपघट्य की कुछ मात्रा मिलाकर कोलाइडल घोल में बदलने की प्रक्रिया को पेप्टाईजेशन कहते हैं। इस प्रक्रिया में विधुत अपघट्य का आयन अवक्षेपित कणों द्वारा अधिशोषित हो जाता है।

$$
\mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{Fe}^{3+} \rightarrow\left[\mathrm{Fe}(\mathrm{OH})_{3}\right] \mathrm{Fe}^{3+}
$$

Ans. The process of converting a freshly prepared precipitate into colloidal form by the addition of a suitable electrolyte in small amount is called peptization.

Peptization involves the adsorption of suitable ions from the electrolyte by the particles of precipitate.

$$
\mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{Fe}^{3+} \rightarrow\left[\mathrm{Fe}(\mathrm{OH})_{3}\right] \mathrm{Fe}^{3+}
$$

प्र० 7.: नाइट्रोजन सिर्फ NCl_{3} बनाता है, जबकि फॉस्फोरस PCl_{3} और PCl_{5} दोनों बनाता है क्यों?

Q. Nitrogen forms only $\mathbf{N C l}_{3}$ but phosphorus forms $\mathbf{P C l}_{3}$ and $\mathbf{P C l}_{5}$ both why?

उत्तर : नाईट्रोजन के बाह्यतम कक्षा में खाली d -ऑर्बाइटल नहीं है। अत: नाईट्रोजन की संयोजकता सिर्फ तीन होती है। जबकि फॉस्फोरस के बाह्यतम कक्षा में खाली d-आर्बाइटल है। अतः फॉस्फोरस परिवर्तनशील सहसंयोजकता भूमिज अवस्था और उत्तेजित अवस्था में क्रमशः 3 और 5 दिखलाता है। इसलिए नाईट्रोजन सिर्फ NCl_{3} बनाता है, जबकि फॉस्फोरस PCl_{3} और PCl_{5} दोनों बनाता है।

Ans. There is no vacant d-orbital in tha outermost orbit of Nitrogen. Thus nitrogen show valency only three. There are valent d-orbitals in the outer most orbit of phosphorus and hence it shows variable covalence 3 and 5 in ground state and excited state respectively. Hence nitrogen forms only NCl_{3} but phosphorus forms PCl_{3} and PCl_{5} both.

प्र० 8.: निम्नलिखित यौगिकों का IUPAC नाम लिखें ?

Write down the IUPAC name of the following compounds.

(a)

(b)

उत्तर : (क) ट्रान्स-4.-ब्रोमोपेन्ट-2-ईन
(ख) सिस-1--ब्रोमो-2-मेथिल ब्यूट-2-ईन
Ans. (a) Trans-4-bromopent-2-ene
(b) Cis-1-bromo-2-methylbut-2-ene

प्र० 9.: निम्नलिखित के संरचना-सूत्र लिखें ?
(क) 2-क्लोरो-3-मेथिल पेन्टेन
(ख) 2-मेथिल ब्यूटेनोईक अम्ल
Q. Write down the structural formula of the following.
(a) 2-Chloro-3-methylpentane
(b) 2-Methyl butanoic acid

Ans. (a)

(b)

प्र०10.: एसीटिक अम्ल को मिथाईल एमीन में किस प्रकार परिवर्तित किया जा सकता है ?
Q. How can acetic acid be converted into methyl amine?

Ans.

$$
\xrightarrow[\mathrm{Br}_{2}]{\mathrm{KOH}(\text { alc })} \underset{\text { Methyl amine }}{\mathrm{CH}_{3} \mathrm{NH}_{2}}
$$

प्र०11.: विटामिन का वर्गीकरण कैसे किया जाता है ? रक्त के स्कन्दन हेतु उत्तरदायी विटामिन का नाम लिखे।
Q. How are vitamins classified? Name the vitamin responsible for coagulation of blood.
उत्तर : जल और वसा में विलेयता के आधार पर विटामिन को दो समूह में वर्गीकृत किया गया है:-
(क) जल में विलेय विटामिन - विटामिन B कॉपलेक्स तथा विटामिन C काम्पलेक्स
(ख) वसा में विलेय विटामिन - विटामिन $\mathrm{A}, \mathrm{D}, \mathrm{E}, \mathrm{K}$ आदि। रक्त स्कन्दन में विटामिन E की महत्वपूर्ण भूमिका है।

Ans. Vitamins are classified into two groups depending upon their solubility in water fat.
(i) Water soluble vitamins - Vitamin B complex and vitamin C complex.
(ii) FAt soluble vitamins - Vitamin A, D, E, K etc. Vitamin-E responsible for coagulation of blood.

दीर्घ उत्तरीय प्रश्नः-

Long Questions :-

प्र० 1.: फैराडे के विद्युत अपघटन के नियमों को लिखे और उनकी व्याख्या करें ?

Q. State and explain Faraday's laws of electrolysis.

उत्तर : (क) विधुत अपघटन के प्रथम नियम - किसी विधुत अपघटन में इलेक्ट्रॉडो पर जमा होनेवाले या मुक्त होनेवाले पदार्थो की मात्रा घोल प्रवाहित विधुत आवेश की मात्रा के समानुपाती होती है।

मान लिया कि घोल में (c) अम्पीयर की धारा (t) सेकेण्ड तक प्रवाहित करने से मुक्त हुए पदार्थ की मात्रा kgm है तो फैराडे के प्रथम नियम से,
$W \propto Q$ (जहाँ Q विधुत आवेश की मात्रा)
$W \propto c t$ or, $W=z c t$ जैसा की हम जानते हैं $Q=c t$ जहाँ z विधुत रासायनिक तुल्यांक स्थिरांक है। यदि $\mathrm{c}=1$ ऐम्पीयर तथा $\mathrm{t}=1$ सेकेण्ड हो तो

$$
\mathrm{W}=\mathrm{z}
$$

अतः किसी घोल में एक ऐम्पीयर की विधुत धारा एक सेकेण्ड तक प्रवाहित की जाती है तो मुक्त पदरार्थ की मात्रा उसके विधुत रासायनिक तुल्यांक के बराबर होती है।
(ख) विधुत अपघटन के द्वितीय नियम - यदि श्रेणी क्रम में जुड़े दो या दो से अधिक विधुत विच्छेद्य घोल से विधुत धारा की समान मात्रा प्रवाहित की जाये तो इलेक्ट्रॉडो पर जमा हुए या मुक्त हुए पदार्थो की मात्राएँ पदार्थो के समतुल्य भार के सतानुपाती होगा।

माना कि साधारण विधुत धारा प्रवाति करने पर जमा हुए पदार्थो की मात्राएँ क्रमशः W_{1}, W_{2} ग्राम तथा उसके समतुल्य भार क्रमशः E_{1}, E_{2} है।

अतः फैराडे के द्वितीय नियम से,

$$
\begin{gathered}
W_{1} \propto E_{1} \text { तथा } W_{2} \propto E_{2} \\
\frac{W_{1}}{W_{2}}=\frac{E_{1}}{E_{2}}
\end{gathered}
$$

प्रथम नियम से, $W=2 c t$
$\therefore W_{1}=z_{1} c t$ तथा $W_{2}=z_{2} c t$
अब W_{1} तथा W_{2} का मान रखने पर,

$$
\frac{z_{1} c t}{z_{2} c t}=\frac{E_{1}}{E_{2}}
$$

या

$$
\frac{z_{1}}{z_{2}}=\frac{E_{1}}{E_{2}}
$$

$$
z \propto E
$$

अतः एक ही प्रकार की विधुत धारा का परिणाम विभिन्न वैधुत अपघट्यों में होकर प्रवाहित किया जाता है,जो श्रेणीबद्ध है, तो विधुत रासायनिक तुल्यांक, तुल्यांक भार के समानुपाती होता है।

Ans. First law of electrolysis:-

During electrolysis the deposited mass on the electrode is directly proportional to the quantity of electricity passing through it.

Let W gm of mass is deposited at the electrode after passing camp of current in t second.

Hence, from $1^{\text {st }}$ law of electrolysis.
$W \propto Q$ (where Q is the quantity of electricity)
$W \propto c t$ or, $W=z c t$ As we know that $Q=c t$
Where z is profitionality constant which is called electrochemical equivalent.
If $\mathrm{c}=1 \mathrm{amp}, \mathrm{t}=1 \mathrm{sec}$, then $\mathrm{W}=2$
If 1 amp of current is passed through a solution in one second then the deposited mass of the substance on the electrode is equal to its electrochemical equivalent.
(ii) Second law of electrolysis :- If the same quantity of electricity is passed through the different electrolytic cells connected in a seris then the deposited masses on the electrodes are directly proportional to their chemical equivalents.

Let W_{1} and W_{2} be the masses of deposited substances on the electrodes and their chemical equivalents are E_{1} and E_{2} respectively then according to

Faraday's second law

$$
\begin{align*}
& W_{1} \propto E_{1} \text { and } W_{2} \propto E_{2} \\
& \frac{W_{1}}{W_{2}}=\frac{E_{1}}{E_{2}} \quad \ldots \text { (i) } \tag{i}
\end{align*}
$$

From $1^{\text {st }}$ law $W=2 c t$

$$
W_{1}=z_{1} c t, W_{2}=z_{2} c t
$$

On putting the value of W_{1} and W_{2} in equation (i)

$$
\begin{aligned}
& \frac{z_{1} c t}{z_{2} c t}=\frac{E_{1}}{E_{2}} \\
& \frac{z_{1}}{z_{2}}=\frac{E_{1}}{E_{2}} \quad \text { Thus } z \propto E
\end{aligned}
$$

Hence on passing same current through various electrolytes connected in series then, electrochemical equivalent is proportional to their equivalence weights.

प्र० 2.: हेवर विधि से अमोनिया गैस के उत्पादनके सिद्धांत का वर्णन करें ।

Q. Describe principle of production of amonia gas by Haber's process.

उत्तर : $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \xrightarrow[450-550]{\mathrm{Fe} / \mathrm{Mo}} 2 \mathrm{NH}_{3}(\mathrm{~g})$
हेवर की विधि द्वारा N_{2} गैस और H_{2} गैस के संयुक्तिकरण से NH_{3} गैस बनाया जाता है।

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)+24 \mathrm{~K} . \mathrm{Cal}
$$

यह प्रतिक्रिया उत्क्रमणीय उष्माक्षेपी एवं आयतन में संकुचन को दिखलाता है। अतः लिशेतेलिए सिद्धांत के अनुसार NH_{3} का उत्पादन बढ़ाया जा सकता है।
(क) उच्च दाब - उच्च दाब पर प्रतिक्रिया का समय अग्रिम दिशा में बढ़ता है।
(ख) निम्न तापक्रम - चूंकि यह प्रतिक्रिया उष्माक्षेपी है अतः निम्न तापक्रम पर NH_{3} का उत्पादन बढ़ना चाहिए। परन्तु निम्न तापक्रम पर N_{2} और H_{2} गैस की प्रतिक्रिया की गति बहुत कम होती है। इसलिए न्यूनतम तापक्रम $450-550^{\circ} \mathrm{C}$ पर यह प्रतिक्रिया करायी जाती है।
(ग) उत्प्रेरक का व्यवहार ख्र $450-550^{\circ} \mathrm{C}$ पर भी यह प्रतिक्रिया पीछे की ओर अग्रसर होने लगती है। इसे रोकने के लिए उत्प्रेरक लोटा और प्रोमोटर मेलिब्डेनम का व्यवहार किया जाता है।

Ans. Principle behind Haber's process :- This method involves the direct ambination of Nitrogen and hydrogen as follows

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)+24 \mathrm{k} . \mathrm{cal}
$$

This reaction is reversible, exothermic and followed by decrease in volume.

Accoding to le-chotelier's principle the optimum condition for greater production of ammonia gas are
(i) shifts the equilibrium.
(ii) exothermic, the production of ammonaia gas should be high at law temperature. But at low temperature N_{2} and H_{2} gases react very slowly. Hence optimum temperature of $450-550^{\circ} \mathrm{C}$ is mainatained.
(iii)

Catalyst - At the optimum temperature $450-550^{\circ} \mathrm{C}$ the equilibrium may shift to backward direction. To speed up the reaction towards forward direction. Catalyst is used.

Finely divided irm + Molybdenum as promoter.

प्र० 3.: इनके बीच अंतर स्पष्ट करें।

(क) खनिज एवं अयस्क
(ख) निस्तापन एवं धारण
(ग) प्रद्रावक एवं धातुमल

Q. Differentiate between-

(a) Mineral and ore
(b) Calcium and Roasting
(c) Flux and slag

उत्तर : (क) खनिज और अयस्क
खनिज - धरती के गर्भ से प्राप्त रसायन जिसमें किसी एक तत्व की प्रतिशत मात्रा अधिक होता है, उसे खनिज कहते हैं।

अयस्क - वह खनिज जिससे धातु आसानी से एवं कम खर्च में निष्कासित किया जा सकता है उसं अयस्क कहते हैं।

सभी अयस्क खनिज है, परन्तु सभी खनित अयस्क नहीं है।
(ख) निस्पातन एवं जारण
निस्पातन - सांद्रित अयस्क को हवा की अनुपस्थिति में द्रवणांक के नीचे गर्म करने पर प्रक्रिया को निस्पातन कहते हैं। निस्पातन में अयस्क में उपस्थित जल और कार्बनिक पदार्थ वाष्प बनकर बाहर हो जाता है, जिससे अयस्क हल्का और सांद्र हो जाता है।
जारण - सांद्रित अयस्क को हवा की उपस्थिति में द्रवणांक के नीचे रिवरेड्री भट्ठी में गर्म करने की प्रक्रिया को जारण कहते हैं।

इस प्रक्रिया में, अयस्क में उपस्थित जल एवं कार्बनिक पदाथ वाष्पित हो जाते हैं।
(ii) अयस्क में उपस्थित अशुद्धियों P, S और As ऑक्साईड बनकर वाष्पित हो जाते हैं।

$$
\begin{aligned}
4 \mathrm{P}+5 \mathrm{O}_{2} & \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5} \uparrow \\
\mathrm{~S}+\mathrm{O}_{2} & \rightarrow \mathrm{SO}_{2} \uparrow \\
4 \mathrm{As}+3 \mathrm{O}_{2} & \rightarrow 2 \mathrm{As}_{2} \mathrm{O}_{3} \uparrow
\end{aligned}
$$

(ग) प्रद्रावक एवं धातुमल
प्रद्रावक - जारित अयस्क में उपस्थित अद्रवणशील अशुद्धि को द्रवणशील पदार्थ में बदलने के लिए बाहर से मिलाये गये पदार्थ को प्रद्रावक कहते हैं।

भाष्मीय अद्रवणशील अशुद्धि + आम्लीय प्रद्रावक \rightarrow द्रवणशील पदार्थ

$$
\mathrm{MnO}_{2}+\mathrm{SiO}_{2} \rightarrow \mathrm{MnSiO}_{3}
$$

आम्लीय अद्रवणशील अशुद्धि + भाष्मीय प्रद्रावक \rightarrow द्रवणशील पदार्थ

$$
\mathrm{SiO}_{2}+\mathrm{CaO} \rightarrow \mathrm{CaSiO}_{3}
$$

धातुमल - अयस्क में उपस्थित अद्रवणशील पदार्थ प्रद्रावक से उच्च तापक्रम पर संयुक्त कर द्रवणशील पदार्थ में परिणत हो जाता है, जिसे धातुमल कहते हैं।

$$
\begin{aligned}
& \mathrm{SiO}_{2}+\mathrm{CaO}=\mathrm{CaSiO}_{3} \\
& \mathrm{MnO}+\mathrm{SiO}_{2}=\mathrm{MnSiO}_{3}
\end{aligned}
$$

Ans. Difference between mineral and ore:-
(a)

Mineral - The chemical found in earth crust having high percentage of any one element is called mineral.
Ore - The mineral from which metal can be extracted easily and economically is called ore.

All ores are minerals but all minerals are not ore.
(b) Calcination - The processof heating of concentrated ore in absence of air below m.p is called calcination. In the process of calcination, volatile impurities present in the ore are evaporated out and ore becomes lighter and porous.
Roasting - The process of heating of concentrated ore in the reverberatory furnance in persence of air below m.p is called roasting.

In the process of roasting-

(i) Volatile impurities such as water and organic material are evaporated out.
(ii) S, P and As impurities present in the ore are evaporated as oxide

$$
\begin{aligned}
4 \mathrm{P}+5 \mathrm{O}_{2} & \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5} \uparrow \\
\mathrm{~S}+\mathrm{O}_{2} & \rightarrow \mathrm{SO}_{2} \uparrow \\
4 \mathrm{As}+3 \mathrm{O}_{2} & \rightarrow 2 \mathrm{As}_{2} \mathrm{O}_{3} \uparrow
\end{aligned}
$$

(c) Flux - the foreign substance added in the roasted ore to remove infusible impurities present in the ore is called flux.

Choice of the flux-
(i) For basic infusible impurities, acidic flux $\left(\mathrm{SiO}_{2}\right)$ is used

$$
\mathrm{MnO}_{2}+\mathrm{SiO}_{2} \rightarrow \mathrm{MnSiO}_{3}
$$

(ii) For acidic infusible material, basic flux is used

$$
\mathrm{SiO}_{2}+\mathrm{CaO} \rightarrow \mathrm{CaSiO}_{3}
$$

Slag - The fusible material formed due to reaction between gange and flux is called slag.

$$
\begin{aligned}
& \text { Gang }+ \text { Flux }=\text { Slag } \\
& \mathrm{SiO}_{2}+\mathrm{CaO}=\mathrm{CaSiO}_{3}
\end{aligned}
$$

प्र० 4.: $1^{\circ}, 2^{\circ}$ तथा 3° ऐल्कोहॉल क्या है ? विक्टर मेयर विधि द्वारा आप इसमें कैसे अंतर करेंगे ?
Q. What are alcohols $1^{\circ}, 2^{\circ}, 3^{\circ}$ alcohols? How will you distinguish them by victor mayer's method.
उत्तर : प्राईमरी $\left(\mathbf{1}^{\circ}\right)$ एल्कोहल - प्राइमरी $\left(1^{\circ}\right)$ एल्कोहल में -OH समूह प्राईमरी कार्बन परमाणु से जुड़ा होता है।
जैसे - $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}, \mathrm{CH}_{3} \mathrm{OH}$
ईथाईल ऐल्कोहल मिथाईल ऐल्कोहल
सेकेण्डरी $\left(2^{\circ}\right)$ एल्कोहल - सेकेण्डरी $\left(2^{\circ}\right)$ एल्कोहल में -OH समूह सेकेण्डरी कार्बन परमाणु से जुड़ा होता है।

टर्शियरी (3°) एल्कोहल - टर्शियरी (3°) एल्कोहल में - OH समूह टर्शियरी कार्बन परमाणु से जुड़ा होता है।

विक्टर मेयर विधि द्वारा $1^{\circ}, 2^{\circ}$ तथा 3° ऐल्कोहल में अंतरः1° ऐल्कोहल
$\mathrm{R}-\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{P}+\mathrm{I}_{2}} \mathrm{R}-\mathrm{CH}_{2} \xrightarrow{\mathrm{AgNO}_{3}} \mathrm{R}-\mathrm{CH}_{2} \mathrm{NO}_{2}$

2° ऐल्कोहल :-

3° ऐल्कोहल :-

Ans. Primary alcohol $\left(\mathbf{1}^{\circ}\right)$:- It is one in which the -OH group is attached to primary carbon atom.

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH},
\end{gathered} \underset{\text { Ethyl alcohol }}{\mathrm{CH}_{3} \mathrm{OH}}
$$

Secondary alcohol $\left(\mathbf{2}^{\circ}\right)$ - Secondary alcohol is that in which -OH group is attached to secondary carbon atom.

Isopropyl alcohol

Butan-2-ol

Tertiary alcohol $\left(\mathbf{3}^{\circ}\right)$ - Tertiary alcohol is that in which -OH group is attached to tertiary carbon atom.

Tertiary Butyl alcohol
$1^{\circ}, 2^{\circ}$ and 3° alcohols can be distinguished by victor Mayer's method as follows:-
1° alcohol :-
$\mathrm{R}-\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{P}+\mathrm{I}_{2}} \mathrm{R}-\mathrm{CH}_{2} \xrightarrow{\mathrm{AgNO}_{3}} \mathrm{R}-\mathrm{CH}_{2} \mathrm{NO}_{2}$

2° alcohol :-

3° alcohol :-
$\mathrm{R}_{3} \mathrm{C}-\mathrm{OH} \xrightarrow{\mathrm{P}+\mathrm{I}_{2}} \mathrm{R}_{3}-\mathrm{C}-\mathrm{I} \xrightarrow{\mathrm{AgNO}_{2}} \mathrm{R}_{3} \mathrm{C}-\mathrm{NO}_{2} \xrightarrow{\mathrm{HNO}_{3}}$ No Reduction

CHEMISRY (Set-3)

सही उत्तर चुने:-

Choose the correct answer :- (1 mark each)

1. निम्न क्रमबद्ध प्रतिक्रिया में $[\mathrm{X}]$ है-

In the reaction sequence

(a) $\mathrm{C}_{6} \mathrm{H}_{5}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{3}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}_{2}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-\mathrm{CHO}$
(d) None of these
2. LiAlH_{4} द्वारा इनमें से कौन अवकृत नहीं होगा-
(क)

(ग) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NO}_{2}$
(ख) $\mathrm{CH}_{3}-\mathrm{CHO}$
(घ)

Which will be not reduced by $\mathrm{LiAlH}_{4}-$
(c)

(b)

(c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NO}_{2}$
(d)

3. एक कार्वनिक यौगिक विक्टर-मेयर जाँच में खून के जैसा लाल रंग उत्पन्न करता है। जब इस यौगिक को कॉपर-नली से $300^{\circ} \mathrm{C}$ पर प्रवाहित किया जाता है तो उत्पन्न यौगिक है-
(क) एल्डिराइड
(ख) किटोन
(ग) कार्वोक्सलिक अम्ल
(घ) बेन्जीन

An orgnic compound gives blood red colouration with Victor-Maeyer's test. When this compound vapour is passed through Cu -tube at $300^{\circ} \mathrm{C}$ produces
(c)
Aldhyde
(b) Ketone
(c) Carboxylic acid
(d) Benzene
4.

इस प्रतिक्रिया में $[\mathrm{X}]$ है-
(क)

(ख)

(ग)

(घ) (क) और (ख) दोनों

The compound [X] will be
(a)

(b)

(c)

(d) (a) and (b) both
5. टॉलेन अभिकारक का उपयोग जाँच के लिए किया जाता है-
(क) एलिडराइड
(ख) किटोन
(ग) 1°-एमीन
(घ) 1°-एल्कोहल

Tollen's reagent is used for detecting-
(a) Aldehyde
(b) Ketone
(c) 1^{o}-amine
(d) $1^{\circ}-$ alcohal
6. डिटॉल में है-
(क) क्रिसॉल + इंथेनॉल
(ख) जायलिनियोल + टरपिनियोल
(ग) क्लोरो जायलिनियोल + टरपिनियोल
(घ) उपरोक्त कोई नहीं

Dettol consists of-
(a) Cresol + ethanol
(b) Xylenol + ter peneol
(c) Chlroxylenol + terpeneol
(d) None of the above
7. बहुलक टेफ्लोन किस एकलक से बना है-
(क) $\mathrm{F}-\mathrm{CH}=\mathrm{CH}-\mathrm{F}$
(ख) $\mathrm{F}-\mathrm{CH}=\mathrm{CH}-\mathrm{Cl}$
(ग) $\mathrm{Cl}-\mathrm{CH}=\mathrm{CH}-\mathrm{Cl}$
(घ)

Teflon is a polymer of the monomer
(c)
$\mathrm{F}-\mathrm{CH}=\mathrm{CH}-\mathrm{F}$
(b) $\mathrm{F}-\mathrm{CH}=\mathrm{CH}-\mathrm{Cl}$
(c) $\mathrm{Cl}-\mathrm{CH}=\mathrm{CH}-\mathrm{Cl}$
(d)

8. $\quad \mathrm{R}-\mathrm{NH}_{2} \xrightarrow[\text { heat }]{\mathrm{CHCl}_{3} / \mathrm{KOH}}[\mathrm{X}]$

यौगिक $[\mathrm{X}]$ है-
(क) $\mathrm{R}-\mathrm{NH}-\mathrm{R}$
(ख) $\mathrm{R}-\mathrm{CN}$
(ग) $\mathrm{R}-\mathrm{NC}$
(घ) $\mathrm{R}-\mathrm{OH}$
$\mathrm{R}-\mathrm{NH}_{2} \xrightarrow[\text { heat }]{\mathrm{CHCl}_{3} / \mathrm{KOH}}[\mathrm{X}]$

The compound [X] is-
(e)
R - NH - R
(b) $\mathrm{R}-\mathrm{CN}$
(f)
R - NC
(d) $\mathrm{R}-\mathrm{OH}$
9. इनमें से किसके द्वारा आँख के लेंस का उत्पादन किया जाता है-
(क) PVC
(ख) Teflon
(ग) Buna-N
(घ) PMMA

Eye lense are manufactured by-
(d)
PVC
(b) Teflon
(c) Buna-N
(d) PMMA
10. इनमें से कौन यौगिक केनिजारो प्रक्रिया नहीं दिखलाता है ?
(क) $\mathrm{H}-\mathrm{CHO}$
(ख)

(ग) $\mathrm{CH}_{3}-\mathrm{CHO}$

Which compound does not perform Cannizaro's reaction among ?
(c)
$\mathrm{H}-\mathrm{CHO}$
(c) $\mathrm{CH}_{3}-\mathrm{CHO}$
(d)

(b)

11. कौन यौगिक गर्म करने पर रंगहीन गैस नहीं देता है ?
(क) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
(ख) NaNO_{3}
(ग) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
(घ) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{2}$

Which compound does not give colourless gas?
(d)
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
(b) NaNO_{3}
(c) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
(d) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{2}$
12. आमोनिया गैस जलीय CuSO_{4} घोल में प्रवाहित करने पर गहरा नीला रंग उत्पन्न करता है। उत्पन्न गहरा नीला रंग का अणुसुत्र है।
(क) $\mathrm{CuSO}_{4} \cdot \mathrm{NH}_{3}$
(ख) $\mathrm{CuSO}_{4} \cdot 4 \mathrm{NH}_{3}$
(ग) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
(घ) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{SO}_{4}$

Ammonia gas is passed through aqueous CuSO_{4} solution produces deep blue colouration. The molecular formula of formed deep blue colouration is
(d)
$\mathrm{CuSO}_{4} \cdot \mathrm{NH}_{3}$
(b) $\mathrm{CuSO}_{4} \cdot 4 \mathrm{NH}_{3}$
(c) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
(d) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{SO}_{4}$
13. क्लोरीन को तनु NaOH के घोल से प्रवाहित करने पर प्राप्त यौगिक है।
(क) NaCl
(ख) NaOCl
(ग) NaCl और NaOCl
(घ) NaCl और NaClO_{3}

Chlorine gas is passed through dilute NaOH solution. The compounds formed are-
(c)
NaCl
(b) NaOCl
(c) $\mathrm{NaCl} \& \mathrm{NaOCl}$
(d) NaCl and NaClO_{3}
14. सोडियम को अमोनिया गैस के साथ गर्म करने पर उत्पन्न यौगिक है-
(क) $\mathrm{Na}_{3} \mathrm{~N}$
(ख) NaNH_{2}
(ग) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}$
(घ) $\mathrm{N}_{3} \mathrm{H}$

Sodium is heated with ammonia gas, the produced compound is-
(c)
$\mathrm{Na}_{3} \mathrm{~N}$
(b) NaNH_{2}
(c) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}$
(d) $\mathrm{N}_{3} \mathrm{H}$
15. $\mathrm{P}_{4} \mathrm{O}_{6}$ अणु में कितने $\mathrm{P}-\mathrm{O}$ बन्धन एवं इल्क्ट्रोन का निर्जन जोड़ी क्रमशः है-
(क) 12,4
(ख) 8,8
(ग) 12,16
(घ) 12,12

How may $\mathrm{P}-\mathrm{O}$ bonds and lone pairs of electrons tespectively are present in $\mathrm{P}_{4} \mathrm{O}_{6}$ molecule -
(c)
12, 4
(b) 8,8
(c) 12,16
(d) 12,12
16. इनमें से कौन अणुचुम्बकीय नहीं है?
(क) $\left[\mathrm{Fe} \mathrm{F}_{6}\right]^{4-}$
(ख) $\mathrm{Ni}(\mathrm{CO})_{4}$
(ग) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$
(घ) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$

Which is not paramagnetic among?
(c)
$\left[\mathrm{Fe} \mathrm{F}_{6}\right]^{4-}$
(b) $\mathrm{Ni}(\mathrm{CO})_{4}$
(c) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$
(d) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
17. जल-धातूकर्म विधि द्वारा धातू का निष्कर्षण अधारित है-
(क) जटिल यौगिक बनाकर
(ख) जलांशन
(ग) निर्जलीकरण
(घ) बिहाइड्रोजनेशन

Hydrometallurgical process of extraction of metals is based on-
(c)
Complex formation
(b) Hydrolysis
(c) Dehydration
(d) Dehydrogenation
18. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ में प्रसंकरण है-
(क) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
(ख) $\mathrm{sp}^{3} \mathrm{~d}$
(ग) dsp^{3}
(घ) sp^{3}

The hybridization in $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ is -
(c)
$\mathrm{sp}^{3} \mathrm{~d}^{2}$
(b) $\mathrm{sp}^{3} \mathrm{~d}$
(c) dsp^{3}
(d) sp^{3}
19. एक ग्राम धातू ऑयन $\mathrm{M}^{2+}, 1.81 \times 10^{22}$ इल्क्ट्रान द्वारा डिसचार्ज होता है, तो धातू का परमाणु भार क्या है ?
(क) 33.35
(ख) 133.4
(ग) 66.7
(घ) 55

One gram metal ion M^{2+} was discharged by the passage of 1.81×10^{22} electrons. What is atomic weight of metal?
(c)
33.35
(b) 133.4
(c) 66.7
(d) 55
20. यदि हाइड्रोजन गैस का दाव 1 वायुमंडलीय दाव से बढ़ाकर 100 वायुमंडलीय दाव कर दिया जाय तो हाइड्रोजन अर्धसेल का अवकरण विभव में परिवर्तन $25^{\circ} \mathrm{C}$ पर होगा-
(क) 0.059 V
(ख) 0.59 V
(ग) 0.0259 V
(घ) 0.118 V

If the pressure of H_{2} gas is increased from 1 atm. to 100 atm . keeping H^{+}ion concentration at 1 M , the change in reduction potential of hydrogen half cell at $25^{\circ} \mathrm{C}$ will be ?
(c)
0.059 V
(b) 0.59 V
(c) $0.0259 \mathrm{~V} \quad$ (d) 0.118 V
21. प्रतिक्रिया के प्रथम कोटि में किसी प्रतिकारक का सान्द्रण 0.8 M से 0.4 M होने में 15 मिनट लगता है। उसी प्रतिक्रिया में प्रतिकारक का सान्द्रण 0.1 M से 0.025 M होने में कितना समय लगेगा-
(क) 30 मिनट
(ख) 15 मिनट
(ग) 7.5 मिनट
(घ) 60 मिनट

In the first order reation, the concentration of the reactant decreases from 0.8 M to 0.4 M in 15 minutes. The time taken for the concentration to change from 0.1 M to 0.025 M is-
(c)
30 minutes
(b) 15 minutes
(c) 7.5 minutes(d)
60 minutes
22. कौन सा ग्राफ प्रतिक्रिया $[\mathrm{A}(\mathrm{g}) \longrightarrow \mathrm{B}(\mathrm{g})]$ के शुन्य कोटि प्रतिक्रिया का प्रदर्शित करता है-

Which graph represent zero order reaction $[\mathrm{A}(\mathrm{g}) \longrightarrow \mathrm{B}(\mathrm{g})]$
(c)

(b)

(c)

(d)

23. hcp संरचना में पेकिंग विभाज होता है-
(क) 0.68
(ख) 0.74
(ग) 0.50
(घ) 0.54

In hcp structure, the packing fraction is-
(c)
0.68
(b) 0.74
(c) 0.50
(d) 0.54
24. किसी रवा में बिन्दु डिफेक्ट उसके घनत्व को घटा देता है तो उसे कहते हैं-
(क) स्कोटीडिफेक्ट
(ख) फ्रेन्केल डिफेक्ट
(ग) दोनों (क) एवं (ख)
(घ) इनमे कोई नहीं

The point defects that lower the density of crystal is called-
(g)
Schotty defects
(b) Frankel fefects
(c) Both (a) and (b)
(d) None of them
25. निम्नलिखित में किस विधि में उत्प्रेरक का उपयोग नहीं होता है-
(क) हेवर की विधि
(ख) डीकॉन की विधि
(ग) लेड कक्ष विधि
(घ) साल्वे विधि

In which of the following process, a catalyst is not used-
(g)
Haber's prcess
(b) Deacon's process
(c) Lead chamber process
(d) Solvay process
26. फ्रन्डलिश आइसोथर्म है-
(क) $\frac{x}{m}=k \cdot P^{1 / n}$
(ख) $x=m k \cdot P^{1 / n}$
(ग) $\frac{x}{m}=k P^{-n}$
(घ) इनमे सभी

The Freundlich adsorption isothesm is-
(h) $\frac{x}{m}=k \cdot P^{1 / n}$
(b) $x=m k \cdot P^{1 / n}$
(c) $\frac{x}{m}=k P^{-n}$
(d) All of these
27. $373^{\circ} \mathrm{K}$ निम्न पर ग्लुकोज के तनु घोल का वाष्पदाव 750 mm है तो घुल्य का अणुप्रभाज है-
(क) $\frac{1}{10}$
(ख) $\frac{1}{7.6}$
(ग) $\frac{1}{35}$
(घ) $\frac{1}{76}$

The vapowr pressure of a dilute solution of glucose is 750 mm of mercury at $373^{\circ} \mathrm{K}$. The mole fraction is solute is-
(h)
$\frac{1}{10}$
(b) $\frac{1}{7.6}$
(c) $\frac{1}{35}$
(d) $\frac{1}{76}$
28. निम्नलिखित में कौन कोलिगेटिव गुण नहीं है-
(क) $\Delta \mathrm{T}_{\mathrm{f}}$
(ख) $\Delta \mathrm{T}_{\mathrm{b}}$
(ग) K_{b}
(घ) पराशरण दाव

Which of the following is not the colligative property?
(i)
$\Delta \mathrm{T}_{\mathrm{f}}$
(b) $\Delta \mathrm{T}_{\mathrm{b}}(\mathrm{c}) \mathrm{K}_{\mathrm{b}}$
(d) Osmotic pressure

SOLUTION

(1)	(a)	(2)	(d)	(3)	(a)	(4)	(a)	(5)	(a)
(6)	(c)	(7)	(d)	(8)	(c)	(9)	(d)	(10)	(c)
(11)	(b)	(12)	(c)	(13)	(c)	(14)	(b)	(15)	(c)
(16)	(b)	(17)	(a)	(18)	(b)	(19)	(c)	(20)	(a)
(21)	(a)	(22)	(d)	(23)	(b)	(24)	(a)	(25)	(d)
(26)	(d)	(27)	(d)	(28)	(c)				

लघु उत्तरीय प्रश्नः-

Very Short Questions :- (2 marks each)

प्र० 1: क्वथणांक की परिभाषा दें एंव व्याख्या करें की घुल्य की उपस्थिति घोल का क्वथणांक क्यों बढ़ा देता है।
Q. Define boiling point and explain why a solute elevate the boiling point of solute?

उत्तर : जिस नियत तापक्रम पर किसी द्रव का वाष्प दाव वायुमंडलीय दाव के बराबर हो जाता है उसे द्रव का क्वथणांक कहते हैं।

किसी घोल में घुल्य डालने पर घोल के दाव में कमी होती है। घोल का दाव वायुमंडलीय दाव के बरावर करने में तापक्रम बढ़ाना पड़ता है। इसलिए घोल क्वथणांक में बृद्धि होती है।

Ans. The temperature at which vapour pressure of liquid becomes equal to atmospheric pressure is called boiling point of the liquid. The vapour pressure of liquid is lowered
when a non-volatile solute is added to it. Therefore, the temperature of solution is rise to increase the vapour pressure equal to atmospheric pressure.

प्र० 2: ईस्टर का जलांशन छंद्म प्रथम कोटि की प्रतिक्रिया है। व्याख्या करें।

Q. Hydrolysis of ester is pseudo first order reaction. Explain.

उत्तर : इस्टर का जलांशन जल की अधिक्ता में किया जाता है। इस विधि में कार्बोक्सिलिक अम्ल एवं एल्कोहॉल प्राप्त होता है।

चूंकि यह प्रतिक्रिया जल की अधिकता में किया जाता है। अतः इसके सांद्रण में दिखाई देने योग्य सांद्रण में कमी नहीं होता है। इसलिए जल का सांद्रण स्थिर रहता है। यानि प्रतिक्रिया की कोटि प्रथम ही रहता है।

प्रतिक्रिया का दर $=K\left[\mathrm{RCOOR}^{\prime}\right]$
प्रतिक्रिया की कोटि $=1$
Ans. The hydrolysis of ester is done in excess of water produces carboxylic acid and alcohol.

Since water is taken in excess, there is no appearcible change in concentration of water i.e., concentration of water remain unchanged. Hence order of realisation is first order only.

प्र० 3: निम्नलिखित प्रतिक्रियाओं के लिए सेल बनायें।
Q. Construct the cells for the following reactions.
(a) $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
(b) $\mathrm{CuSO}_{4}+\mathrm{Fe} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu}$

Ans. (a) $\mathbf{Z n}+\mathbf{H}_{\mathbf{2}} \mathrm{SO}_{\mathbf{4}} \rightarrow \mathrm{ZnSO}_{\mathbf{4}}+\mathbf{H}_{\mathbf{2}}$
$\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$(oxidation)
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$ (Reduction)
Cells: $\mathrm{Zn}\left|\mathrm{Zn}^{2+} \| 2 \mathrm{H}^{+}\right| \mathrm{H}_{2}, \mathrm{Pt}$
or, $\quad \mathrm{Zn}\left|\mathrm{ZnSO}_{4} \| \mathrm{H}_{2} \mathrm{SO}_{4}\right| \mathrm{H}_{2}$, Pt
(b) $\mathrm{CuSO}_{\mathbf{4}}+\mathrm{Fe} \rightarrow \mathrm{FeSO}_{4}+\mathbf{C u}$

Call reaction

$$
\begin{aligned}
& \mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \text {(Oxidation) } \\
& \mathrm{Cu}^{2+}+2 e^{-} \rightarrow \mathrm{Cu} \text { (Reduction) } \\
& \mathrm{Cell}: \mathrm{Fe}^{2}\left|\mathrm{FeSO}_{4} \| \mathrm{CuSO}_{4}\right| \mathrm{Cu}
\end{aligned}
$$

प्र० 4: सल्फरडाईऑक्साईड $\left(\mathrm{SO}_{2}\right)$ एक ऑक्सीकारक एवं अवकारक दोनों है। व्याख्या करें।
Q. $\quad \mathrm{SO}_{2}$ is an oxidising and reducing agent both. Explain.

उत्तर : SO_{2} में सल्फर का ऑक्सीकरण संख्या +4 है जो कि सल्फर के न्यूनतम -2 एवं महत्तम +6 ऑक्सीकरण संख्या के मध्यवर्ती है। इसलिए SO_{2} एवं ऑक्सीकारक एवं अवकारक दोनों की तरह कार्य करता है।

Ans. Oxidation number of sulphur is +4 in SO_{2}. Which is intermediate of minimum $\mathrm{O}^{\prime} \mathrm{NO}, \mathrm{N}$, of sulphur -2 and maximum $\mathrm{O}^{\prime} \mathrm{N}+6$. Hence SO_{2} acts as oxidising and reducing agent both.

प्र० 5: नाइट्रोजन गैस, उजला फॉस्फोरस के अपेक्षा कम क्रियाशील है, क्यों ?
Q. Nitrogen gas is less reactive than white phosphorous. Why ?

उत्तर : नाइट्रोजन गैस $\left(\mathrm{N}_{2}\right)$ में नाइट्रोजन-नाइट्रोजन के बीच त्रिबंधन है। जबकि उजला फॉस्फोरस $\left(\mathrm{P}_{4}\right)$ में P और P परमाणु एकल बंधन से जुटा होता है।

चूंकि त्रिबंधन का बंधन विखंडन ऊर्जा एकल बंधन से अधिक होता है। इसलिए N_{2} उजला फॉस्फोरस से कम क्रियाशील है।

Ans. There are triple bonds between nitrogen atoms in $\mathrm{N}_{2}(\mathrm{~N} \equiv \mathrm{~N})$ while phosphorous atom in white phosphorous $\left(\mathrm{P}_{4}\right)$ is bonded with single bond.

Since bond dissociation energy of triple bonds in N_{2} is greater than single bond in P_{4}. Hence nitrogen gas is less reactive than white phosphorous.

प्र० 6: $\mathrm{HF}, \mathrm{HCl}$ से कमजोर अम्ल है। व्याख्या करें।
Q. HF is weaker acid than HCl . Explain.

उत्तर : $\mathrm{H}-\mathrm{F}$ का बंधन दूरी $\mathrm{H}-\mathrm{Cl}$ से छोटा होता है। इसलिए $\mathrm{HF}, \mathrm{HCl}$ से कमजोर अम्ल है।
Ans. Bond length of H-F is shorter than H-Cl. Hence H-F is weaker acid than HCl .

प्र० 7: SO_{2} और Cl_{2} गैसों के विरंजक क्रिया में क्या अंतर है ?

Q. What is difference between bleaching action of $\mathrm{SO}_{\mathbf{2}}$ and $\mathrm{Cl}_{\mathbf{2}}$ gas.

उत्तर : जल की उपस्थिति में SO_{2} गैस नवजात हाइड्रोजन प्रदान करता हैं जो रंगीन पदार्थ को अवकृत कर रंगहीन कर देता है। तथा हवा के संपर्क में ऑक्सीकृत होकर पुनः रंग प्राप्त कर लेता है।

$$
\begin{aligned}
& \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2[\mathrm{H}] \\
& \text { रंगहीन पदार्थ }+[\mathrm{H}] \rightarrow \text { रंगहीन }
\end{aligned}
$$

Cl_{2} गैस जल की उपस्थिति में नवजात ऑक्सीजन प्रदान करता है जो रंगीन पदार्थ को ऑक्सीकृत कर स्थायी रूप से रंगहीन करता है।

$$
\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HCl}+[\mathrm{O}]
$$

Ans. $\quad \mathrm{SO}_{2}$ gas in presence of water gives nascent hydrogen. Nascent hydrogen decolourised the coloured sbuset once. i.e., bleaching action of SO_{2} is a reducing action.

$$
\begin{aligned}
& \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2[\mathrm{H}] \\
& \text { Colour }+[\mathrm{H}] \rightarrow \text { Discolour } \\
& \text { Dicoloured subs. }+[\mathrm{O}] \rightarrow \text { Coloured } \\
& \text { air }
\end{aligned}
$$

In contact of air bleached substance gets its original colour. Bleaching action of Cl_{2} gas is an oxidising action and permanent.

$$
\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HCl}+[\mathrm{O}]
$$

Colour subs. $+[\mathrm{O}] \rightarrow$ Discolour

प्र० 8: निम्नलिखित का अम्लीय शक्ति के घटते क्रम में सजायें।
Q. Arrange the following in order of decreasing order of acidic strength.
(a)

 ,

(b) $\mathrm{CH}_{3} \mathrm{COOH}, \mathbf{H C O O H}, \mathrm{Cl}-\mathrm{CH}_{2}-\mathbf{C O O H}$,

Ans. (a)

(b)

प्र० 9: O -नाईट्रोफिनॉल एवं P -नाईट्रोफिनॉल को उसके मिश्रण से कैसे आप अलग करेंगे ?
Q. How can you separate O-Nitrophenol and P-Nitrophenol from the mixture ?

उत्तर : p-नाईट्रोफिनॉल का क्वथणांक O -नाइट्रोफिनॉल से अधिक है क्योंकि p -नाईट्रोफिनॉल में अंतर आण्विक हाइड्रोजन बंधन होता है जबकि O -नाईट्रोफिनॉल में अंतरा-आण्विक हाइड्रोजन बंधन होता है।

अतः इन दोनों के मिश्रण को आंशिक स्त्रावण विधि से अलग किया जाता है।
Ans. Boiling point of p-nitrophenol is greater than O-nitrophenol due to intermolecular and intramolecular hydrogen bond respectively.

Hence O-nitrophenol and p-nitrophenol are separated by fractional distillation process.

प्र०10: निम्नलिखित युग्म यौगिकों के एक निश्चित जाँच विधि से अंतर करें।
Q. Distinguish the following pair of compounds by the proper test.
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{OH}$
(b)

उत्तर : (क) ईथेनॉल आइडोफार्म जाँच दिखलाता है जबकि मिथेनॉल नहीं दिखलाता है।
(ख) इथेनल टॉलेन्स जाँच दिखलाता है जबकि प्रोनेनोन नहीं दिखलाता है।
Ans. (a) Ethanal $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ perform idoform test but $\mathrm{CH}_{3} \mathrm{OH}$ does not.
(j) Ethanal $\left(\mathrm{CH}_{3}-\mathrm{CHO}\right)$ performs Tollen's reagent test but propanone does not.

प्र० 11:निम्नलिखित प्रतिक्रियाओं को लिखें।
(क) फ्राइडल-क्राफ्ट अल्कालेशन प्रतिक्रिया
(ख) कार्बाइल एमीन प्रतिक्रिया
Q. Write the following reactions.
(i) Friedal-craft's alkylation reaction
(ii) Carbyl amine reaction

उत्तर : (क) बेंजीन को मिथाइल क्लोराइड के साथ AlCl_{3} की उपस्थिति में गर्म करने पर टॉलिन प्राप्त होता है।

(ख) 1° एमीन, क्लोरोफॉर्म एवं एल्कोहलीय KOH के मिश्रण को गर्म करने पर कार्बाइल एमीन का सड़े अंडे जैसा गंध प्राप्त होता है।

$$
\mathrm{R}-\mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH} \xrightarrow{\Delta \mathrm{H}} \mathrm{R}-\mathrm{NC}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}
$$

कार्बइल एमीन

Ans. (i) Benzene is heated with methyl chloride in presence of AlCl_{3} gives toulene.

(ii) When mixture of 1°-amine, chlorofoem and alcholic KOH is boiled, rotten egg smell of carbyl amine is obtained.

$$
\mathrm{R}-\mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH} \xrightarrow{\Delta \mathrm{H}} \underset{\text { Carbyl amine }}{\mathrm{R}-\mathrm{NC}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}}
$$

दीर्घ उत्तरीय प्रश्नः-

Long Questions :-

प्र० 1: एक्टीवेशन ऊर्जा से क्या समझते हैं ? उत्प्रेरक का एक्टीवेशन ऊर्जा एवं प्रतिक्रिया के वेग पर क्या प्रभाव पड़ता है ?
Q. What do you understand by activation energy. What is effect of catalyst on activation energy and velocity of reaction?
उत्तर : किसी प्रतिक्रिया में प्रतिकारक के अणुओं को भाग लेने के लिए आवश्यक न्यूनतम ऊर्जा को एक्टीवेशन ऊर्जा कहते हैं। इसे Ea से दिखाया जाता है।
(क) धनात्मक उत्प्रेरक प्रतिक्रिया के वेग को एक्टीवेशन ऊर्जा घटाकर बढ़ता है।
(ख) ऋणात्मक उत्प्रेरक प्रतिक्रिया के वेग को एक्टीवेशन ऊर्जा बढ़ाकर घटता है।
Ans. The minimum energy required by the reactant molecules to participate in a reaction is called activation energy. It is denoted by Ea.
$\mathrm{Ea}=$ Threshold energy - Average K.E. of reacting molecular

(i) A positive catalyst decreased the activation energy of reactants and thus increased velocity of reactions.

(ii) Negative catalyst decreases the velocity of reaction by increasing activation energy.

प्र० 2: घोल के कोलिगेटिव गुणों को परिभाषित करें एवं सापेक्षिक वाष्पदाब के अवनमन का वर्णन करें।
Q. Define colligative properties of solution and describe relative lowering of vapour pressure.
उत्तर : किसी घोल का वह गुण जो घुल्य कणों की संख्या पर निर्भर करता है उसके प्रकृति पर नहीं उसे घोल का कोलिगेटिव गुण कहते हैं।
नॉर्मल कोलिगेटिव गुणों को संतुष्ट करने वाले शर्ते-
(1) धुल्य उड़नशील नहीं होना चाहिए।
(2) धुल्य विखंडनीय एवं संघनितनहीं होना चाहिए।

उदाहरण-
(क) वाष्पदाब का अवनमण
(ख) क्वथणांक का उन्नयण
(ग) हिमांक का अवनमण
(घ) पराशरण दाब
वाष्प दाब का अवनमण - जब किसी घोल में अवाष्पशील अविखंडनीय एवं संघनित होने वाले धुल्य मिलाया जाता है तो-
(1) घोल का सतहीय क्षेत्रफल घट जाता है जिससे वाष्पित होने वाले अणुओं की संख्या घट जाती है।
V. P. \propto सतहीय क्षेत्रफल
(2) घोल का घनत्व बढ़ जाता है जिसके कारण घोल के घोलक का वाष्पित होने का दर घट जाता है। इसलिए घोल के वाष्पदाब में घोलक की अपेक्षा कमी होती है।
शुद्ध घोल का वाष्प दाब $=P o$
घोल का वाष्प दाब = Ps

घोल के वाष्प दाब में कमी $=\mathrm{Po}-\mathrm{Ps}$
घोल के वाष्पदाब में सापेक्षिक कमी $=\frac{\mathrm{Po}-\mathrm{Ps}}{\mathrm{Po}}$
रॉउल्ट नियम के अनुसार,

$$
\frac{\mathrm{Po}-\mathrm{Ps}}{\mathrm{Po}}=\text { घुल्य का मोल प्रभाज }
$$

Ans. The properties of solution which depends upon number of solute particles present in the solution irrespective of their nature is called colligative properties of solution.

The following conditions are satisfied for normal colligative properties of solution.
(i) Solution should be very dilute.
(ii) Solute should be non-volatile, does not dissociable or associable.

Example:-
(a) Lowering of vapour pressure.
(b) Elevation in the boiling point.
(c) Depression in the freezing point.
(d) Osmotic pressure.

Lowering of vapour pressure - When a non-volatile solute is added in a solvent. The vapour pressure is lowered due to the following reason.
(i) Surface area of solution decreases from solvent molecules.
V. P. \propto surface area of solvent
(ii) Density of solution increases and rate of evaporation decreases.

Rate of Evaporation $\propto \sqrt{\frac{1}{\text { density }}}$
Therefore V.P. of solution decreases from pure solvent.
V.P. of pure solvent $=\mathrm{Po}$
V.P. of solution $=P s$

Lowering of V. P. $=\mathrm{Po}-\mathrm{Ps}$
Relative lowering of V.P. $=\frac{\mathrm{Po}-\mathrm{Ps}}{\mathrm{Po}}$
According to Raoult's law

$$
\frac{\mathrm{Po}-\mathrm{Ps}}{\mathrm{Po}}=\text { mole fraction of solute }
$$

प्र० 3:हेबर की विधि से अमोनिया गैस के उत्पादन के सिद्धांत का वर्णन करें।

Q. Describe the principle of manufacture of amonia by Haber's process.

उत्तर : नाईट्रोजन और हाइड्रोजन गैसों के मिश्रण $(1: 3)$ को गर्म करने से अमोनिया गैस प्राप्त होता है।

$$
\begin{aligned}
& \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) ; \quad \Delta \mathrm{H}=-\mathrm{Q} \\
& 1 \mathrm{~mol} \quad 3 \mathrm{~mol} \quad 2 \mathrm{~mol} \\
& 1 \text { vol. } 3 \text { vol. } 2 \text { vol. }
\end{aligned}
$$

उपर्युक्त प्रतिक्रिया उत्क्रमणीय, उष्माक्षेपी एवं प्रतिक्रिया में आयतन का संकुचन होता है। अतः लिशेतलिय का सिद्धांत अपना कर NH_{3} का उत्पादन बढ़ाया जा सकता है।
(क) चूंकि आयतन में कमी होती है अतः दाब बढ़ाने पर NH_{3} का उत्पादन बढ़ता है।
(ख) प्रतिक्रिया उष्माश्रेणी है, अतः निम्न तापक्रम पर NH_{3} का उत्पादन अधिक होना चाहिए। परन्तु निम्न तापक्रम पर N_{2} और H_{2} प्रतिक्रिया नहीं करता है।
अतः महत्तम $\left(400-450^{\circ} \mathrm{C}\right)$ तापक्रम पर उत्प्रेरक Fe और Mo का मिश्रण व्यवहार किया जाता है।

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \frac{450^{\circ} \mathrm{C}}{\stackrel{\mathrm{Fe} / \mathrm{Mo}, 10 \mathrm{~atm}}{\rightleftharpoons}} 2 \mathrm{NH}_{3}(g) ; \quad \Delta \mathrm{H}=-\mathrm{Q}
$$

Ans. When mixture of N_{2} gas and H_{2} gas $(1: 3)$ is heated amonia gas ia obtained.

The above reaction is reversible, exothermic and decrease in volume occur. Thus applying LeChatelier's principle for greater production of amonia gas.
(i) There is decrease in volume in reaction. Hence increase in pressure, shifts the equilibrium towards forward direction i.e. production of NH_{3} increases at high pressure.
(ii)

This reaction is exothermic. Hence at low temperature, production of NH_{3} should increse. But at lower temperatue $\mathrm{N}_{2} \& \mathrm{H}_{2}$ do not react.

So, at optimum temperature $\left(400-450^{\circ} \mathrm{C}\right)$ catalyst is applied.

$$
\begin{aligned}
\text { Catalyst }=\mathrm{Fe} \& \mathrm{M}_{\mathrm{O}} \\
\mathrm{~N}_{2}(g)+3 \mathrm{H}_{2}(g) \underset{\mathrm{Fe} / \mathrm{Mo}, 10 \mathrm{~atm}}{\rightleftharpoons} 2 \mathrm{NH}_{3}(g) ; \quad \Delta \mathrm{H}=-\mathrm{Q}
\end{aligned}
$$

प्र० 4: क्या होगा जब-
(क) इथेनामाइड को ब्रोमीन एवं NaOH के साथ गर्म किया जाता है।
(ख) फॉर्मल्डिहाईड को अमोनिया गैस के साथ गर्म किया जाता है।
(ग) इथेनल को टॉलेन अभिकारक के साथ गर्म किया जाता है।

Q. What happens when-

(a) Ethanamide is heated with bromine and sodium hydroxide solution.
(b) Formaldehyde is heated with ammonia gas.
(c) Ethanal is heated with Tollen's reagent.

उत्तर : (क) इथेनामाइट को ब्रोमीन एवं NaOH के साथ गर्म करने पर मिथाईल एमीन प्राप्त होता है।

(ख) जब फॉर्मल्डिहाइड को अमोनिया गैस के साथ गर्म करने पर हेक्सामिथिलीन टेट्रा एमीन प्राप्त होता है।

$$
\underset{\text { Ethanamide }}{6 \mathrm{H}-\mathrm{CHO}}+4 \mathrm{NH}_{3} \rightarrow \underset{\substack{\text { Hexamethyle } \\ \text { tetramine }}}{\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}}+6 \mathrm{H}_{2} \mathrm{O}
$$

(ग) इथेनल को टॉलिन अभिकारक के साथ गर्म करने पर स्ल्विर अवक्षेपित होता है। जो परखनली पर सिल्वर अवक्षेपित होता है। जो परखनली की दिवार पर जमा होकर दर्पण के तरह दीखता है।

Ans. (a) Ethanamide is treated with bromine and boiled with NaOh produces methyl amine.

Ethanamide
(i)

When formaldehyde is heated with amonia gas, hexamethylene tetraamine is obtained.

$$
\underset{\text { Ethanamide }}{6 \mathrm{H}-\mathrm{CHO}}+4 \mathrm{NH}_{3} \rightarrow \underset{\substack{\text { Hexamethyle } \\ \text { tetramine }}}{\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}}+6 \mathrm{H}_{2} \mathrm{O}
$$

(j)

When ethanal is heated with Tollen's reagent, silver is precipitated and deposited at the wall of test tube seems as mirror.

$$
\underset{\text { Ethanal }}{\mathrm{CH}_{3}-\mathrm{CHO}}+\mathrm{Ag}_{2} \mathrm{O} \rightarrow \underset{\text { Ethanoic acid }}{\mathrm{CH}_{3} \mathrm{COOH}}+2 \mathrm{Ag}
$$

Long Questions :-

प्र० 1: एकल इलेक्ट्रॉड विभव क्या है ? एकल इलेक्ट्रॉड विभव की गणना किस प्रकार की जाती है?
Q. What is single electrode potential ? How would you calculate the single electrode potential?
उत्तर : एकल इलेक्ट्रॉड विभव - किसी अर्द्धसेल में इलेक्ट्रॉड एवं घोल के मिलन बिन्दु पर विधुतीय द्वितीयक सतह के निर्माण से उत्पन्न होने वाले विभवांतर को इलेक्ट्रॉड विभव कहते हैं। इसे एकल विभव भी कहते हैं। एकल इलेक्ट्रॉड विभव धातु की इलेक्ट्रॉन प्राप्त करने या त्यागने की प्रवृति है, जबकि धातु को उसके आयन वाले घोल के संपर्क में रखा जाता है। इसे E से सूचित किया जाता है। इस प्रकार प्रत्येक गैल्वनी सेल में ऐनोड एवं कैथोड का ऑक्सीकरण एवं अवकरण विभव होता है।

जैसे $-\mathrm{M}^{n+}+n e^{-} \rightarrow \mathrm{M}(s)$ जहाँ $\mathrm{M}=$ धातु, $\mathrm{e}=$ इलेक्ट्रॉन, $\mathrm{n}=$ इलेक्ट्रॉनों की संख्या है।
एकल इलेक्ट्रॉड विभव की गणना - सन् 1889 ई० में नर्नस्ट ने एकल इलेक्ट्रॉड विभव की गणना के लिए निम्न समीकरण प्रतिपादित किया।

$$
E=\frac{R T}{n F} \ln \frac{\mathrm{P}}{\mathrm{P}^{\prime}}, \text { or } E=\frac{R T}{n F} \ln \mathrm{P}-\frac{R T}{n F} \ln \mathrm{P}^{\prime}
$$

जहाँ $\mathrm{P}=$ पारिसारक दाब $\mathrm{P}^{\prime}=$ विलयन दाब

$$
\begin{aligned}
& P=K \times C \\
& E=\frac{R T}{n F} \ln (K \times C)-\frac{R T}{n F} \ln \mathrm{P}
\end{aligned}
$$

अतः परिसारक दाब आयन के सांद्रण का समानुपाती होता है।

$$
E=\frac{R T}{n F} \ln \frac{K}{P}+\frac{R T}{n F} \ln C
$$

स्थिर तापमान पर $\frac{R T}{n F} \ln \frac{K}{P}$ का मान किसी धातु विशेष के लिए स्थिरांक $\left(E^{\circ}\right)$ रहता है।

$$
\begin{aligned}
& E=E^{\circ}+\frac{R T}{n F} \ln C=E^{\circ}+\frac{2.303}{n F} R T \log _{10} C \\
& E=E^{\circ}+\frac{0.0591}{n} \log _{10} C \\
& \mathrm{~T}=25^{\circ} \mathrm{C}=273+25=298 \mathrm{~K} \\
&=E^{\circ}+\frac{0.0591}{n} \log _{10}\left[\mathrm{M}^{n+}\right]
\end{aligned}
$$

जहाँ $\left[\mathrm{M}^{n+}\right]=$ आयन का सांद्रण है।

Ans. Single electrode potential:-

The potential difference of the electrical double layer formed at the contact of electrode (metal) and electrolyte in a halt cell is called electrode potential.

The electrode potential is the measure of tendency of an electrode to lose or gain the electrons. When it is in contact with its own ions. It is represented by E. Thus we have oxidation potential and reduction potential for anode \& cathode of a galvanic cell.

As for example:-
$\mathrm{M}^{n+}+n e^{-} \rightarrow \mathrm{M}(s)$ where $\mathrm{M}=$ Metal, $\mathrm{e}=$ electron
$\mathrm{N}=$ no. of electron.
Calculation of the single electrode potential :- In 1889 Nearest has deduced following equation for calculation of single electrode potential.

$$
E=\frac{R T}{n F} \ln \frac{\mathrm{P}}{\mathrm{P}^{\prime}}, \text { or } E=\frac{R T}{n F} \ln \mathrm{P}-\frac{R T}{n F} \ln \mathrm{P}^{\prime}
$$

Where $\mathrm{P}=$ Osmotic pressure $\mathrm{P}^{\prime}=$ Pressure of solution.

$$
\begin{aligned}
P & =K \times C \\
E & =\frac{R T}{n F} \ln (K \times C)-\frac{R T}{n F} \ln \mathrm{P}
\end{aligned}
$$

There for osmotic pressure is proportional to the concentration of ions.

$$
E=\frac{R T}{n F} \ln \frac{K}{P}+\frac{R T}{n F} \ln C
$$

At constnat temperature, $\frac{R T}{n F} \ln \frac{K}{P}$ is constant for a metal and is called standard electrode potential $\left(E^{\circ}\right)$

$$
\begin{aligned}
E & =E^{\circ}+\frac{R T}{n F} \ln C=E^{\circ}+\frac{2.303}{n F} R T \log _{10} C \\
E & =E^{\circ}+\frac{0.0591}{n} \log _{10} C \\
\mathrm{~T} & =25^{\circ} \mathrm{C}=273+25=298 \mathrm{~K} \\
& =E^{\circ}+\frac{0.0591}{n} \log _{10}\left[\mathrm{M}^{n+}\right]
\end{aligned}
$$

Here $\left[\mathrm{M}^{n+}\right]=$ concentration of the ion

प्र० 2: निम्नलिखित पदों की व्याख्या करें।
$\begin{array}{ll}\text { (क) उप सहसंयोजन संख्या } & \text { (ख) लिगेन्ड }\end{array}$
(ग) केन्द्रीय परमाणु
(घ) प्रभावी परमाणु संख्या

Q. Explain the following terms:-

(a) Co-ordination number
(b) Ligand
(c) Central atom
(d) Effective atomic number

उत्तर : (क) उप सहसंयोजन संख्या - जटिल यौगिक में लिगेन्ड द्वारा बनाये गये उपसहसंयोजन बंधों की कुल संख्या उस धातु की उपसहसंयोजन संख्या कहलाती है।

प्रत्येक एकदंतुर द्वारा लिगेन्ड द्वारा दो एवं इसी प्रकार आगे भी उपसहसंयोजन बंध बनाये जाते हैं। जैसे $-\left[\mathrm{Ag}(\mathrm{CN})_{2}\right], \quad\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{3}\right] \mathrm{Cl}_{3}$

$$
\mathrm{C} . \mathrm{N}=2 \quad \mathrm{C}, \mathrm{~N}=3
$$

(ख) लिगेन्ड - उप सहसंयोजी यौगिकों में उदासीन अणु या आयन जो कि इलेक्ट्रॉन दाता के रूप में कार्य करते हैं, अर्थात् धातु परमाणु या आयन को इलेक्ट्रॉन युग्म प्रदान कर उस सह संयोजन बंधन बनाते हैं, लिगेन्ड कहलाते हैं। लिगेन्ड लूईस क्षार की तरह व धातु परमाणु या आयन लुईस अम्ल की तरह कार्य करते हैं।
(ग) केन्द्रीय परमाणु - उस सह संयोजन संकुल में वह धातु परमाणु या आयन, जिसमें नियत संख्या में अणु या आयन उपसहसंयोजन बंध से जुड़े होते हैं, केन्द्रीय परमाणु या आयन कहलाते हैं।
जैसे $-\mathrm{Ni}(\mathrm{CO})_{4}$ संकुल में Ni परमाणु केन्द्रीय परमाणु है। $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ संकुल में CO^{2+} आयन केन्द्रीय आयन है।
(घ) प्रभावी परमाणु संख्या - किसी जटिल यौगिक में केन्द्रीय परमाणु या आयन से संबंधित कुल इलेक्ट्रॉन की संख्या को प्रभावी परमाणु संख्या कहते हैं। सिडविक (Sidewick) ने उपसहसंयोजक यौगिक के धातु परमाणु या आयन के EAN को निम्न सूत्र द्वारा ज्ञात किया जाता है।
EAN $=$ धातु परमाणु का परमाणु क्रमांक $(Z)-$ ऑक्सीकरण अवस्था $+2 \times C . N$
Ans. (a) Co-odination Number :- The total numberof co-ordinate bonds formed by the ligands in the complex is called co-ordination number.

$$
\begin{array}{cc}
\text { Example }-\left[\mathrm{Ag}(\mathrm{CN})_{2}\right], & {\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{3}\right] \mathrm{Cl}_{3}} \\
\mathrm{C} . \mathrm{N}=2 & \mathrm{C}, \mathrm{~N}=3
\end{array}
$$

(k)

Ligands - The neutral molecules or ions linked directly to the central atom/cation in the co-ordination entity having ability to donate ions prir of electrons to the central metal atom/cation are known as ligands.
(1)

Central atom - In co-ordination complex or entity the metal atom or ion to which a fixed number of molecules or inos are attached by co-ordinate bonds is called central atom (or ions). For example, an $\mathrm{Ni}(\mathrm{CO})_{4}$ the atom Ni is central atom. An complex $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}, \mathrm{CO}^{2+}$ ion is the central ion.
(m)

Effective Atomic Number - The resultant
number of electrons of the central metal atom/ion after gaining electrons from the
donor atoms of the ligands in co-ordination entity is known as effective atomic number of central metal atom/ion.
$\mathrm{EAN}=$ Atomic number of central metal $(\mathrm{Z})-\mathrm{ON}+2 \mathrm{CN}$

प्र० 3: रासायनिक समीकरण देकर निम्नलिखित अभिक्रियाओं की व्याख्या करें।
(क) कोल्बे अभिक्रिया
(ख) रीमर-टीमेंन अभिक्रिया
Q. Write chemical reaction to illustrate the following reactions.
(a) Kolbe's reaction
(b) Reimer-Tiemann's reaction

उत्तर : (क) कोल्बे अभिक्रिया - जब फीनॉल के क्षारीय घोल (सोडियम फीनेट) से CO_{2} गैस 400 K तथा 4 से 7 वायुमंडलीय दाब पर प्रवाहित की जाती है, तो सेलिसाईलिक अम्ल बनता है। इस अभिक्रिया को कोल्बे अभिक्रिया कहते हैं।

Salicylicarid
(ख) रीमर-टीमैन अभिक्रिया - फीनॉल को क्लोरोफॉर्म तथा जलीय NaOH के साथ 340 K पर गर्म करने के पश्चात् प्राप्त प्रतिफल के जल-विच्छेदन से 2 -हाइड्रॉक्सी बेंजल्डिहाईड (सेलिसाइल एल्डिहाईड) प्राप्त होता है। इस अभिक्रिया को रीमर-टीमैन अभिक्रिया कहा जाता है।

Ans. (a) Kolbe's reaction - When CO_{2} gas is passed through sodium phenolate at 400 K and 4 to 7 atmospheric pressure then salicylic acid is formed. This reaction is called Kolbe's reaction.

(h) Reimer-Tiemann's Reaction - Treatment of phenol with chloroform in presence of aqeous sodium hydroxide at 340 K followed by hydrolysis of resulting product gives 2-hydroxy benzaldehyde. This reaction is called Reimer-Tiemann's reaction.

प्र० 4: एनीलीन बनाने की विधि का वर्णन करें। इसकी निम्नलिखित से अभिक्रिया लिखें।
(क) सान्द्र $\mathrm{H}_{2} \mathrm{SO}_{4}$
(ख) Br_{2}
(ग) $\mathbf{N a}$
(घ) $\mathbf{C H C l}_{3}$
Q. Describe the method of preparation of aniline. How aniline reacts with -
(a) Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(b) Br_{2}
(c) Na
(d) CHCl_{3}

उत्तर : नाईट्रोबेंजीन पर Sn तथा HCl की उच्च ताप पर प्रतिक्रिया कराने पर ऐनीलीन प्राप्त होता है।

(क) Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ से प्रतिक्रिया -

P-amino Benzene sulphmic arid
(ख) Br_{2} से प्रतिक्रिया -

2,4,6-Tri Bromo aniline.
(ग) Na से प्रतिक्रिया -

(घ) क्लोरोफॉर्म से प्रतिक्रिया -

$$
\begin{aligned}
& \text { (H) } \mathrm{CHH}_{3}+3 \mathrm{KOH} \xrightarrow{4 \mathrm{H}} \text { - } \mathrm{N}^{+}=\overrightarrow{\mathrm{C}^{\prime}}+3 \mathrm{VH} \\
& +3120 \\
& \text { phenyl isocyanide. }
\end{aligned}
$$

Ans. When nitrobenzene reacts with Sn and HCl in presence of high temperature aniline is obtained.

$$
[0]+3 \mathrm{Sn}+12 \mathrm{Hel} \xrightarrow{\mathrm{NO}_{2}} \underset{\text { Aniline }}{\text { holt }}+3 \mathrm{SnC}_{4}+4 \mathrm{H}_{2} \mathrm{O}
$$

(a) Reaction with conc. $\mathbf{H}_{2} \mathbf{S O}_{4}$ - Aniline reacts with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give P -amino benzene sulphonic acid.

P-amino Benzene sulphmic arid
(b)

Reaction with $\mathbf{B r}_{2}$

(c)

Reaction with Sodium - When aniline reacts with sodium at high temperature it gives sodium anilide.

(d) Reaction with Chloroform - When aniline reacts with chloroform it gives phenyl isocyanide.

$$
\begin{aligned}
& \text { phenyl isocyanide. }
\end{aligned}
$$

CHEMISRY (Set-4)

सही उत्तर चुने:-

Choose the correct answer :- (1 mark each)

1. किसमें hcp क्रिस्टल संरचना होती है?
(क) NaCl
(ख) CsCl
(ग) Zn
(घ) RbCl

Which has hcp crystal structure ?
(a) NaCl
(b) CsCl
(c) Zn
(d) RbCl
2. प्रथम क्रम के प्रतिक्रिया के लिए वेग स्थिरांक की इकाई होती है-
(क) समय ${ }^{-1}$
(ख) मोल लीटर ${ }^{-1}$ सेकेण्ड $^{-1}$
(ग) लीटर मोल $^{-1}$ सेकेण्ड ${ }^{-1}$
(घ) लीटर मोल $^{-1}$ सेकेण्ड

The unit of rate constant of $1^{\text {st }}$ order reaction is-
(d) Time^{-1}
(b) Mole litre ${ }^{-1} \sec ^{-1}$
(c) Litre mole ${ }^{-1} \mathrm{sec}^{-1}$
(d) Litre mole ${ }^{-1}$ sec
3. निम्न में से कौन एक अवरोधक है ?
(क) ग्रेफाईट
(ख) एलुमिनियम
(ग) डायमंड
(घ) सिलिकॉन

Which of the following is an insulator?
(d)
Graphite
(b) Aluminium
(c) Diamond
(d) Silicon
4. NaCl सोडियम आयन Na^{+}आयन का सहसंयोजन संख्या कितना होता है ?
(क) 4
(ख) 3
(ग) 6
(घ) 5

Co-ordination number of sodium ion Na^{+}in NaCl is-
(d)
4
(b) 3
(c) 6
(d) 5
5. निम्नलिखित में कौन अक्रिस्टलीय ठोस पदार्थ है?
(क) हीरा
(ख) CsCl
(ग) काँच
(घ) साधारण नमक

Which one of the following is non-crystalline or amorphous?
(a) Diamond
(b) CsCl
(c) Glass
(d) Common slat
6. स्वर्ण संख्या सबसे कम होती है-
(क) जिलेटिन में
(ख) अंडे के एल्बुमिन में
(ग) गोंद में
(घ) स्टार्च में

Gold number is minimum in case of-
(a) Gelatin
(b) Egg albumin
(c) Gum
(d) Starch
7. थर्माइट विधि में अपचायक होता है-
(क) निकेल
(ख) सिल्वर
(ग) कॉपर
(घ) एल्युमिनियम

In the thermite process, the reducing agent is-
(d)
Nikel
(b) Silver
(c) Copper
(d)

Aluminium
8. सल्फाइड अयस्क के सांद्रण की विधि है-
(क) झाग प्लवन
(ख) भर्जन
(ग) वैद्युत अपघटन (घ) बेसेमरीकरण

The process employed for the concentration of sulphide ore is-
(g)
Froth floatation
(b) Roasting
(h)
Electrolysis
(d) Bessemerisation
9. कैसिटेराइट अयस्क है-
(क) Mn का
(ख) Ni का
(ग) Sb का
(घ) Sn का

Cassiterite is an ore of-
(e)
Mn
(b) Ni
(c) Sb
(d) Sn
10. सिनेबार है-
(क) HgS
(ख) PbS
(ग) SnO_{2}
(घ) PbCO_{3}

Cinnabar is-
(d)
HgS
(b) PbS
(c) SnO_{2}
(d) PbCO_{3}
11. कार्बोजन किसका मिश्रण है-
(क) $\mathrm{H}_{2}+\mathrm{O}_{2}$
(ख) $\mathrm{H}_{2}+\mathrm{S}$
(ग) $\mathrm{O}_{2}+\mathrm{CO}_{2}$
(घ) $\mathrm{SO}_{2}+\mathrm{O}$

Which is the mixture of carbogen.
(e)
$\mathrm{H}_{2}+\mathrm{O}_{2}$
(b) $\mathrm{H}_{2}+\mathrm{S}$
(c) $\mathrm{O}_{2}+\mathrm{CO}_{2}$
(d)
$\mathrm{SO}_{2}+\mathrm{O}$
12. $\left[\mathrm{CO}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$ के कितने समायवयवी संभव है?
(क) 2
(ख) 4
(ग) 6
(घ) 1

How many isomers are possible in $\left[\mathrm{CO}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$?
(e)
2
(b) 4
(c) 6
(d) 1
13. $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ में Fe का प्रसंकरण है-
(क) sp^{3}
(ख) dsp^{3}
(ग) $\mathrm{sp}^{3} \mathrm{~d}^{3}$
(घ) $\mathrm{d}^{2} \mathrm{sp}^{3}$

The hybridisation of Fe in $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is -
(d)
sp^{3}
(b) dsp^{3}
(c) $\mathrm{sp}^{3} \mathrm{~d}^{3}$
(d) $d^{2} s p^{3}$
14. निम्न में से संघनन बहुलक है-
(क) टेफ्लॉन
(ख) पॉलिस्टइरीन
(ग) PVC
(घ) डेक्रान

Condensation polymer among the following is -
(d)
Teflon
(b) Polystyrene
(c) PVC
(d) Dacron
15. नायलॉन-6, 6 है-
(क) पॉलिमाइड
(ख) पॉलिएस्टर
(ग) पॉलिस्टाइरिन
(घ) पॉलिविनाइल

Nylon $-6,6$ is
(d)
Polymide
(b) Polyester
(c) Polystyrene
(d) Polyvinyl
16. निम्न में से कौन जैव अपघटनीय बहुलक है-
(क) सेलुलोज
(ख) सहबहुलक
(ग) पॉलिविनाइल क्लोराइड
(घ) नायलॉन-6, 6

Which of the following is a biodegradable polymer
(d)
Cellulose
(b) Polyethene
(c) Polyvinyl chloride
(d) Nylon - 6, 6
17. एस्प्रिन है एक-
(क) एंटीबायोटिक
(ख) ज्वरनाशी
(ग) एंटीसेप्टिक
(घ) इनमें से कोई नहीं

Aspirin is a/an-
(d)
Antibiotic
(b) Antipyretic
(c) Antiseptic(d) None of these
18. एक विस्तृत स्प्रेक्ट्रम एंटीबायोटिक है-
(क) पैरासीटामोल
(ख) पेन्सिलीन
(ग) एस्प्रिन
(घ) क्लोरेमफेनिकॉल

A broad spectrum antibiotic is-
(d)
Paracetamol
(b) Penicillin
(c) Aspirine
(d) Chloramphenicol
19. कौन-सी पृष्ठीय परिघटना नहीं है ?
(क) समांगी उत्प्रेरण
(ख) ठोसो का मिलना
(ग) जंग लगना
(घ) वैधुत अपघटन प्रक्रिया

Which of the following is not a surface phenomenon?
(d)
Heterogenous catalyst (b) Fusion of solid
(e)
Corrosion
(d) Electrolysis process
20. निम्न में से कौन सा आयोडोफॉर्म परीक्षण नहीं देता है-
(क) एथेनल
(ख) एथेनॉल
(ग) पेन्टेन-2-ओन
(घ) पेन्टेन-3-ओन

Which of the following will not give iodoform test?
(d)
Ethanal
(b) Ethanol
(c) Pentan-2-one
(d)
Pentan-3-one
21. लैक्टिक अम्ल में काइरल कार्बन की संख्या है-
(क) 4
(ख) 5
(ग) 1
(घ) 3

The number of chiral carbon is lactic acid is
(d)
4
(b) 5
(c) 1
(d) 3
22. काप्रोलैक्टम किसका मोनोमर है-
(क) नायलोन-6
(ख) नायलोन-6, 6
(ग) नायलोन-2-नायलोन-6
(घ) टेरीलीन

Caprolactum is the monomer of
(d)
Nylong-6
(b) Nylon-6, 6
(c) Nylon-2-Nylon-6
(d) Terylene
23. विटामिन B_{12} में होता है-
(क) Fe (II)
(ख) $\mathrm{Co}(\mathrm{III})$
(ग) $\mathrm{Zn}(\mathrm{II})$
(घ) $\mathrm{Ca}(\mathrm{II})$

Vitamin B_{12} contains-
(d)
Fe(II)
(b) CO III)
(c) $\mathrm{Zn}(\mathrm{II})$
(d) $\mathrm{Ca}(\mathrm{II})$
24. थाइमीन है-
(क) 5-मेथिलयूरेसिल
(ख) 4-मेथिलयूरेसिल
(ग) 3-मेथिलयूरेसिल
(घ) 1-मेथिलयूरेसिल

Thymine is-
(h) 5-methyluracil
(b) 4-methyluracil
(c) 3-methyluracil
(d) 1-methyluracil
25. स्टार्च की मोनोमेरिक इकाई है-
(क) ग्लूकोज
(ख) फ्रक्टोज
(ग) ग्लूकोज व फ्रक्टोज
(घ) मेन्नोस

The monomeric units of starch is/are-
(i)
Glucose
(b) Fructose
(c) Glucose and fructose
(d) Mannose
26. फॉर्मिक अम्ल को $\mathrm{H}_{2} \mathrm{SO}_{4}$ के साथ गर्म करने पर देता है-
(क) $(\mathrm{COOH})_{2}$
(ख) $\mathrm{CH}_{3} \mathrm{COOH}$
(ग) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(घ) CO

Formic acid when heated with $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives-
(n)
$(\mathrm{COOH})_{2}$
(b) $\mathrm{CH}_{3} \mathrm{COOH}$
(c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(d) CO
27. निम्न में से कौन सा प्रबल अम्ल है-
(क) HCOOH
(ख) $\mathrm{CH}_{3} \mathrm{COOH}$
(ग) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$
(घ) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}$

Which is the strongest acid?
(k)
HCOOH
(b) $\mathrm{CH}_{3} \mathrm{COOH}$
(c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$
(d) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}$
28. इनमें से कौन अत्यधिक क्षारीय है ?
(क) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(ख) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$
(ग) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(घ) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$

In the following which is most basic ?
(I)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(b) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$
(c) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$

SOLUTION

(1)	(c)	(2)	(a)	(3)	(c)	(4)	(d)	(5)	(c)
(6)	(a)	(7)	(d)	(8)	(a)	(9)	(d)	(10)	(a)
(11)	(c)	(12)	(b)	(13)	(d)	(14)	(d)	(15)	(a)
(16)	(d)	(17)	(b)	(18)	(d)	(19)	(d)	(20)	(a)
(21)	(c)	(22)	(a)	(23)	(b)	(24)	(a)	(25)	(a)
(26)	(d)	(27)	(a)	(28)	(d)				

लघु उत्तरीय प्रश्न:-

Very Short Questions :- (2 marks each)

प्र० 1: अधिशोषण की प्रवृति हमेशा उष्माक्षेपी होती है ? व्याख्या करें।
Q. Adsorption is always exothermic in nature. Explain

उत्तर : उष्मागतिकी के अनुसार, $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \cdot \Delta \mathrm{S}$ अधिशोषण एक स्वभाविक प्रक्रिया है, अतः $\Delta \mathrm{G}$ ऋणात्मक है। चूंकि अधिशोषण से इन्ट्रॉपी में कमी होती है। अत: $-\mathrm{T} \cdot \Delta \mathrm{S}$ धनात्मक हो जाता है, जिसके कारण $\Delta \mathrm{G}$ ॠणात्मक होने के लिए $\Delta \mathrm{H}$ ऋणात्मक होना पड़ता है। इसलिए अधिशोषण हमेशा उष्माक्षेपी होता है।

Ans. Accordint to thermodynamics, $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \cdot \Delta \mathrm{S}$. Adsorption is a spontaneous process, therefore $\Delta \mathrm{G}$ is negative since adsorption decreases entropy ($\Delta \mathrm{S}=-\mathrm{ve}$). i.e., $-\mathrm{T} \cdot \Delta \mathrm{S}=+\mathrm{ve}$. As a result of adsorption. $\Delta \mathrm{H}$ has to be negative if $\Delta \mathrm{G}$ to be negative. Hence adsorption is always exothermic.

प्र० 2: जब कोलाईडल घोल से प्रकाश प्रवाहित किया जाता है तो उसका रास्ता टेढ़ीप्यमान हो जाता है, व्याख्या करे।
Q. When a beam of light is passed through a colloidal solution, its path gets illuminated. Explain.
उत्तर : जब किसी घोल से प्रकाश की धारा प्रवाहित किया जाता है, तो प्रकाश का प्रकीर्णन नहीं होता है, परन्तु कोलॉईडल घोल से प्रकाश प्रवाहित करने पर प्रकाश का प्रकीर्णन होता है। यह प्रभाव सर्वप्रथम टींडल ने अध्ययन किया, जिसे टींडल प्रभाव कहते हैं, जिसके कारण प्रकाश पथ देदीप्यमान हो जाता है।

Ans. When a beam of light is passed through the solution, there is no scattering of light but scattering of light occurs when it is passed through colloidal solution. This effect is called Tyndall's effect. Due to scattering of light by colloidal particles the path of light gets illuminated.

प्र० 3: प्रथम कोटि की अभिक्रिया के वेग स्थिरांक का मान $60 \mathrm{sec}^{-1}$ है। इसी अभिक्रिया के 75% पूरो होने में कितना समय लगेगा।
Q. The rate constant $f 0$ a first order reaction is $60 \mathrm{sec}^{-1}$. How much time will it take to reduce $\mathbf{7 5 \%}$ of its initial concentration.
उत्तर : माना कि प्रारंभिक सांद्रता $=a, K=60 \mathrm{sec}^{-1}$

$$
t \text { समय बाद, }=a-\frac{a \times 75}{100}=a-\frac{3 a}{4}=\frac{a}{4}
$$

हम जानते हैं कि

$$
\begin{aligned}
t & =\frac{2.303}{K} \log \frac{a}{a-x} \\
& =\frac{2.303}{60} \log \frac{a}{a / 4} \\
& =\frac{2.303}{60} \log 4 \\
& =\frac{2.303 \times 2 \times 0.301}{60} \\
& =0.023 \mathrm{sec}
\end{aligned}
$$

Ans. Let the initial concentration $=a$

$$
\begin{aligned}
& \text { After } t \sec =a-\frac{a \times 75}{100}=a-\frac{3 a}{4}=\frac{a}{4} \\
& K=60 \mathrm{sec}^{-1}
\end{aligned}
$$

We know that

$$
\begin{aligned}
t & =\frac{2.303}{K} \log \frac{a}{a-x} \\
& =\frac{2.303}{60} \log \frac{a}{a / 4} \\
& =\frac{2.303}{60} \log 4 \\
& =\frac{2.303 \times 2 \times 0.301}{60} \\
& =0.023 \mathrm{sec}
\end{aligned}
$$

प्र० 4: पहाड़ी इलाकों में नमक का छिड़काव रोड पर पड़े बर्फ को गलाने में मदद करता है, कैसे ?
Q. How does sprinkling of salt help in cleaning the snow covered roads in hilly area?
उत्तर : जब लवण को सड़क पर पड़े बर्फ पर डाला जाता है तब बर्फ पिघलना शुरू कर देता है, क्योंकि लवण जल के हिमांक का अवनमन कर देता है। इस प्रकार यह सड़क पर पड़े बर्फ को साफ करने में मदद करता है।

Ans. When salt is spread over snow covered roads, snow starts melting from the surface because depression of freezing point of water takes place due to addition of slat. It helps in clearing of roads.

प्र० 5: 5 ऐम्पियर की विधु धारा 0.5 घंटे तक प्रवाहित होने पर 3.048 ग्राम धातु कैथोड पर जमा होती है। धातु का समतुल्यांक भार निकाले। (1 फैराडे $=96500$ कूलॉम्ब)
Q. A current of 5 A flowing for 0.5 hr deposits 3.048 gm of a metal at cathode. Find out the equivalent weight of the metal. (1 Faraday $=96500$ coulomb)
उत्तर : प्रवाहित धारा की मात्रा $=\mathrm{ct}$

$$
=5 \times 0.5 \times 60 \times 60 \text { कूलॉम }=9000 \text { कूलॉम }
$$

$\therefore 9000$ कूलॉम से धातु का 3.048 ग्राम मुक्त होता है।

$$
\begin{aligned}
96500 \text { कूलॉम से धातु का } & =\frac{3.048 \times 96500}{9000} \text { ग्राम } \\
& =32.68 \text { ग्राम }
\end{aligned}
$$

अतः धातु का समतुल्यांक भार $=32.68$
Ans. Amount of electrical charge $=\mathrm{ct}$

$$
\begin{aligned}
& =5 \times 0.5 \times 60 \times 60 \text { coulomb } \\
& =9000 \text { coulomb }
\end{aligned}
$$

From 9000 coulomb 3.048 gm metal liberated

$$
\begin{aligned}
\therefore 96500 \text { coulomb } & =\frac{3.048 \times 96500}{9000} \mathrm{gm} \\
& =32.68 \mathrm{gm} \mathrm{metal} \text { liberated }
\end{aligned}
$$

Equivalent wt. of metal $=32.68$

प्र० 6: किसी प्रतिक्रिया का वेग स्थिरांक $20^{\circ} \mathrm{C}$ से $30^{\circ} \mathrm{C}$ करने पर दोगुणा हो जाता है। प्रतिक्रिया की सक्रियण ऊर्जा की गणना करें ?
Q. The rate constant of a reaction becomes double. When temperature changes from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. Calculate the activation energy of the reaction.
उत्तर : हम जानते है। कि

$$
\log \frac{K_{2}}{K_{1}}=\frac{E a}{2.303} R\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]
$$

$$
\begin{gathered}
\text { Given } \frac{K_{2}}{K_{1}}=2, R=8.31 \mathrm{~J} / \mathrm{K} \\
T_{1}=273+20=293 \mathrm{~K} \\
T_{2}=273+30=303 \mathrm{~K} \\
\log 2= \\
\Rightarrow \quad \frac{E a}{2.303 \times 8.31}\left[\frac{303-293}{293 \times 303}\right] \\
0.3010= \\
\frac{E a}{2.303 \times 8.31} \times \frac{10}{293 \times 303} \\
E a= \\
=511412.932 \text { joule } / \mathrm{mole} \\
=
\end{gathered}
$$

Ans. We know that

$$
\begin{gathered}
\log \frac{K_{2}}{K_{1}}=\frac{E a}{2.303} R\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right] \\
\text { Given } \frac{K_{2}}{K_{1}}=2, R=8.31 \mathrm{~J} / \mathrm{K} \\
T_{1}=273+20=293 \mathrm{~K} \\
T_{2}=273+30=303 \mathrm{~K} \\
\log 2= \\
\Rightarrow \quad \frac{E a}{2.303 \times 8.31}\left[\frac{303-293}{293 \times 303}\right] \\
\Rightarrow 0.3010= \\
\begin{aligned}
E a= & \frac{E a}{2.303 \times 8.31} \times \frac{10}{293 \times 303} \\
= & 511412.932 \text { joule } / \mathrm{mole} \\
& =511.413 \mathrm{KJ} / \mathrm{mole}
\end{aligned}
\end{gathered}
$$

प्र० 7: नीचे दिये गये अभिक्रियाओं से (A), (B) और (C) को पहचाने।
Q. From the given reactions identify A, B and C.

उत्तर :

Tertiary Butyl Alcohol

प्र० 8: निम्नलिखित IUPAC नाम वाले यौगिकों की संरचना लिखें।
(क) 2-मेथिल ब्यूटेन-2-ऑल
(ख) 1-एथॉक्सी प्रोपेन

Write down the structural formula of the following.
(a) 2-Methyl butane-2-ol
(b) 1-Ethoxy Propane

Ans.

(b) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

प्र० 9: निम्नलिखित यौगिकों के IUPAC नाम लिखें।
Q. Write down the IUPAC name of the following compound.
(a)

(b)

Ans.
(a)

2,2,4 - Trimethyl pent-1-ol
(b)

1-Methoxy-2-Methyl propane

प्र०10: लैन्थेनाईडो एवं एक्टिनाईडो में दो अंतर लिखें ?
Q. Write two difference between lanthanides and actinides.

उत्तर :

लैन्थेनाइडो	
1. अधिकांश आयन रंगहीन होते हैं।	1. अधिकांश आयन रंगीन होते हैं।
2. ऑक्साईड तथा हाईड्रॉक्साईड कम भाष्मिक होते हैं।	2. ऑक्साईड तथा हाइड्रोक्साईड अधिक भाष्मिक होते हैं।

Ans.

Lanthamides	Actinides
1. Most of their ions are colourless.	1. Most of their ions are coloured.
2. Lanthanide compound are less basic.	2. Actinide compounds are more basic.

प्र०11 :(क) उन विटामिनों के नाम लिखें, जिनकी कमी से निम्न रोग होते हैं ?
(i) रिकेट्स
(ii) रतौंधी
(ख) बुना-S के दो उपयोगों को लिखें।
Q. (a) Name the vitamins deficiency of which causes?
(i) Rickets (ii) Night blindness
(b) Write two uses of Buno-S.

उत्तर : (क) (i) रिकेट्स - विटामिन D
(ii) रतौंधी - विटामिन A
(क) (i) टायर बनाने में
(ii) रबर सोल, जूता तथा बेल्ट बनाने में

Ans. (a) (i) Rickets - Vitamin D
(ii) Night blindness - Vitamin A
(m)
(i) In the manufacture of tyres.
(ii) In making rubber soles, shoes and belt.

दीर्घ उत्तरीय प्रश्नः-

Long Questions :-

प्र० 1: एकल इलेक्ट्रॉड विभव क्या है ? एकल इलेक्ट्रॉड विभव की गणना किस प्रकार की जाती है?
Q. What is single electrode potential ? How would you calculate the single electrode potential?
उत्तर : एकल इलेक्ट्रॉड विभव - किसी अर्द्धसेल में इलेक्ट्रॉड एवं घोल के मिलन बिन्दु पर विधुतीय द्वितीयक सतह के निर्माण से उत्पन्न होने वाले विभवांतर को इलेक्ट्रॉड विभव कहते हैं। इसे एकल विभव भी कहते हैं। एकल इलेक्ट्रॉड विभव धातु की इलेक्ट्रॉन प्राप्त करने या त्यागने की प्रवृति है, जबकि धातु को उसके आयन वाले घोल के संपर्क में रखा जाता है। इसे E से सूचित किया जाता है। इस प्रकार प्रत्येक गैल्वनी सेल में ऐनोड एवं कैथोड का ऑक्सीकरण एवं अवकरण विभव होता है।
जैसे $-\mathrm{M}^{n+}+n e^{-} \rightarrow \mathrm{M}(s)$ जहाँ $\mathrm{M}=$ धातु, $\mathrm{e}=$ इलेक्ट्रॉन, $\mathrm{n}=$ इलेक्ट्रॉनों की संख्या है।
एकल इलेक्ट्रॉड विभव की गणना - सन् 1889 ई० में नर्नस्ट ने एकल इलेक्ट्रॉड विभव की गणना के लिए निम्न समीकरण प्रतिपादित किया।

$$
E=\frac{R T}{n F} \ln \frac{\mathrm{P}}{\mathrm{P}^{\prime}}, \text { or } E=\frac{R T}{n F} \ln \mathrm{P}-\frac{R T}{n F} \ln \mathrm{P}^{\prime}
$$

जहाँ $\mathrm{P}=$ पारिसारक दाब $\mathrm{P}^{\prime}=$ विलयन दाब

$$
P=K \times C
$$

$$
E=\frac{R T}{n F} \ln (K \times C)-\frac{R T}{n F} \ln \mathrm{P}
$$

अत: परिसारक दाब आयन के सांद्रण का समानुपाती होता है।

$$
E=\frac{R T}{n F} \ln \frac{K}{P}+\frac{R T}{n F} \ln C
$$

स्थिर तापमान पर $\frac{R T}{n F} \ln \frac{K}{P}$ का मान किसी धातु विशेष के लिए स्थिरांक $\left(E^{\circ}\right)$ रहता है।

$$
\begin{aligned}
& E=E^{\circ}+\frac{R T}{n F} \ln C=E^{\circ}+\frac{2.303}{n F} R T \log _{10} C \\
& E=E^{\circ}+\frac{0.0591}{n} \log _{10} C \\
& \mathrm{~T}=25^{\circ} \mathrm{C}=273+25=298 \mathrm{~K} \\
&=E^{\circ}+\frac{0.0591}{n} \log _{10}\left[\mathrm{M}^{n+}\right]
\end{aligned}
$$

जहाँ $\left[\mathrm{M}^{n+}\right]=$ आयन का सांद्रण है।

Ans. Single electrode potential:-

The potential difference of the electrical double layer formed at the contact of electrode (metal) and electrolyte in a halt cell is called electrode potential.

The electrode potential is the measure of tendency of an electrode to lose or gain the electrons. When it is in contact with its own ions. It is represented by E. Thus we have oxidation potential and reduction potential for anode $\&$ cathode of a galvanic cell.

As for example:-

$$
\begin{aligned}
& \mathrm{M}^{n+}+n e^{-} \rightarrow \mathrm{M}(s) \text { where } \mathrm{M}=\mathrm{Metal}, \mathrm{e}=\text { electron } \\
& \mathrm{N}=\text { no. of electron. }
\end{aligned}
$$

Calculation of the single electrode potential :- In 1889 Nearest has deduced following equation for calculation of single electrode potential.

$$
E=\frac{R T}{n F} \ln \frac{\mathrm{P}}{\mathrm{P}^{\prime}}, \text { or } E=\frac{R T}{n F} \ln \mathrm{P}-\frac{R T}{n F} \ln \mathrm{P}^{\prime}
$$

Where $\mathrm{P}=$ Osmotic pressure $\mathrm{P}^{\prime}=$ Pressure of solution.

$$
\begin{aligned}
& P=K \times C \\
& E=\frac{R T}{n F} \ln (K \times C)-\frac{R T}{n F} \ln \mathrm{P}
\end{aligned}
$$

There for osmotic pressure is proportional to the concentration of ions.

$$
E=\frac{R T}{n F} \ln \frac{K}{P}+\frac{R T}{n F} \ln C
$$

At constnat temperature, $\frac{R T}{n F} \ln \frac{K}{P}$ is constant for a metal and is called standard electrode potential (E°)

$$
\begin{aligned}
E & =E^{\circ}+\frac{R T}{n F} \ln C=E^{\circ}+\frac{2.303}{n F} R T \log _{10} C \\
E & =E^{\circ}+\frac{0.0591}{n} \log _{10} C \\
\mathrm{~T} & =25^{\circ} \mathrm{C}=273+25=298 \mathrm{~K} \\
& =E^{\circ}+\frac{0.0591}{n} \log _{10}\left[\mathrm{M}^{n+}\right]
\end{aligned}
$$

Here $\left[\mathrm{M}^{n+}\right]=$ concentration of the ion

प्र० 2: निम्नलिखित पदों की व्याख्या करें।
(क) उप सहसंयोजन संख्या
(ख) लिगेन्ड
(ग) केन्द्रीय परमाणु
(घ) प्रभावी परमाणु संख्या
Q. Explain the following terms:-
(a) Co-ordination number
(b) Ligand
(c) Central atom
(d) Effective atomic number

उत्तर : (क) उप सहसंयोजन संख्या - जटिल यौगिक में लिगेन्ड द्वारा बनाये गये उपसहसंयोजन बंधों की कुल संख्या उस धातु की उपसहसंयोजन संख्या कहलाती है।

प्रत्येक एकदंतुर द्वारा लिगेन्ड द्वारा दो एवं इसी प्रकार आगे भी उपसहसंयोजन बंध बनाये जाते हैं। जैसे $-\left[\mathrm{Ag}(\mathrm{CN})_{2}\right],\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{3}\right] \mathrm{Cl}_{3}$

$$
\mathrm{C} . \mathrm{N}=2 \quad \mathrm{C}, \mathrm{~N}=3
$$

(ख) लिगेन्ड - उप सहसंयोजी यौगिकों में उदासीन अणु या आयन जो कि इलेक्ट्रॉन दाता के रूप में कार्य करते हैं, अर्थात् धातु परमाणु या आयन को इलेक्ट्रॉन युग्म प्रदान कर उस सह संयोजन बंधन बनाते हैं, लिगेन्ड कहलाते हैं। लिगेन्ड लूईस क्षार की तरह व धातु परमाणु या आयन लुईस अम्ल की तरह कार्य करते हैं।
(ग) केन्द्रीय परमाणु - उस सह संयोजन संकुल में वह धातु परमाणु या आयन, जिसमें नियत संख्या में अणु या आयन उपसहसंयोजन बंध से जुड़े होते हैं, केन्द्रीय परमाणु या आयन कहलाते हैं।

जैसे $-\mathrm{Ni}(\mathrm{CO})_{4}$ संकुल में Ni परमाणु केन्द्रीय परमाणु है। $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ संकुल में CO^{2+} आयन केन्द्रीय आयन है।
(घ) प्रभावी परमाणु संख्या - किसी जटिल यौगिक में केन्द्रीय परमाणु या आयन से संबंधित कुल इलेक्ट्रॉन की संख्या को प्रभावी परमाणु संख्या कहते हैं। सिडविक (Sidewick) ने उपसहसंयोजक यौगिक के धातु परमाणु या आयन के EAN को निम्न सूत्र द्वारा ज्ञात किया जाता है।
$\mathrm{EAN}=$ धातु परमाणु का परमाणु क्रमांक $(Z)-$ ऑक्सीकरण अवस्था $+2 \times C N$
Ans. (a) Co-odination Number :- The total numberof co-ordinate bonds formed by the ligands in the complex is called co-ordination number.
Example $-\left[\mathrm{Ag}(\mathrm{CN})_{2}\right], \quad\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{3}\right] \mathrm{Cl}_{3}$
C. $\mathrm{N}=2$
$\mathrm{C}, \mathrm{N}=3$
(o)

Ligands - The neutral molecules or ions linked directly to the central atom/cation in the co-ordination entity having ability to donate ions prir of electrons to the central metal atom/cation are known as ligands.
(p)

Central atom - In co-ordination complex or entity the metal atom or ion to which a fixed number of molecules or inos are attached by co-ordinate bonds is called central atom (or ions). For example, an $\mathrm{Ni}(\mathrm{CO})_{4}$ the atom Ni is central atom. An complex $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}, \mathrm{CO}^{2+}$ ion is the central ion.
(q)

Effective Atomic Number - The resultant number of electrons of the central metal atom/ion after gaining electrons from the donor atoms of the ligands in co-ordination entity is known as effective atomic number of central metal atom/ion.
$\mathrm{EAN}=$ Atomic number of central metal $(\mathrm{Z})-\mathrm{ON}+2 \mathrm{CN}$

प्र० 3: रासायनिक समीकरण देकर निम्नलिखित अभिक्रियाओं की व्याख्या करें।
(क) कोल्बे अभिक्रिया
(ख) रीमर-टीमेंन अभिक्रिया
Q. Write chemical reaction to illustrate the following reactions.
(a) Kolbe's reaction
(b) Reimer-Tiemann's reaction

उत्तर : (क) कोल्बे अभिक्रिया - जब फीनॉल के क्षारीय घोल (सोडियम फीनेट) से CO_{2} गैस 400 K तथा 4 से 7 वायुमंडलीय दाब पर प्रवाहित की जाती है, तो सेलिसाईलिक अम्ल बनता है। इस अभिक्रिया को कोल्बे अभिक्रिया कहते हैं।

(ख) रीमर-टीमैन अभिक्रिया - फीनॉल को क्लोरोफॉर्म तथा जलीय NaOH के साथ 340 K पर गर्म करने के पश्चात् प्राप्त प्रतिफल के जल-विच्छेदन से 2 -हाइड्रॉक्सी बेंजल्डिहाईड (सेलिसाइल एल्डिहाईड) प्राप्त होता है। इस अभिक्रिया को रीमर-टीमैन अभिक्रिया कहा जाता है।

Ans. (a) Kolbe's reaction - When CO_{2} gas is passed through sodium phenate at 400 K and 4 to 7 atmospheric pressure then salicylic acid is formed. This reaction is called Kolbe's reaction.

Salicylicarid
(j) Reimer-Tiemann's Reaction - Treatment of phenol with chloroform in presence of aqeous sodium hydroxide at 340 K followed by hydrolysis of resulting product gives 2-hydroxy benzaldehyde. This reaction is called Reimer-Tiemann's reaction.

Salicylal dehyde.

प्र० 4: एनीलीन बनाने की विधि का वर्णन करे ? इसकी निम्नलिखित से अभिक्रिया लिखे। (क) सान्द्र $\mathrm{H}_{2} \mathrm{SO}_{4}$
(ख) Br_{2}
(ग) $\mathbf{N a}$
(घ) CHCl_{3}
Q. What are alcohols $1^{\circ}, 2^{\circ}, 3^{\circ}$ alcohols ? How will you distinguish them by victor mayer's method.
उत्तर : नाईट्रोबेंजीन पर Sn तथा HCl की उच्च ताप पर प्रतिक्रिया कराने पर ऐनीलीन प्राप्त होता है।

$$
[0]+3 \text { Sn }+121+\mathrm{hen} \xrightarrow{\mathrm{NO}_{2}} \underset{\text { Anilime }}{\text { hor }}+3 \mathrm{Snc}_{4}+4 \mathrm{H}_{2} \mathrm{O}
$$

(क) Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ से प्रतिक्रिया -

$$
\text { (2H2 }+\mathrm{CMCH}_{2} \mathrm{CH}_{4} \xrightarrow{180^{\circ} \mathrm{C}} \mathrm{SO}_{3}^{\mathrm{SO}_{3} \mathrm{H}}
$$

P-amino Benzene Sulphmic arid
(ख) Br_{2} से प्रतिक्रिया -

(ग) Na से प्रतिक्रिया -

(घ) क्लोरोफॉर्म से प्रतिक्रिया -

Ans. When nitrobenzene reacts with Sn and HCl in presence of high temperature aniline is obtained.

$$
\mathrm{NO}_{2}+3 \mathrm{Sn}+12 \mathrm{H}+\mathrm{C} \xrightarrow{\text { Late }} \underset{\text { Aniline }}{\text { (or }}+3 \mathrm{SnCl}_{4}+4 \mathrm{H}_{2} \mathrm{O}
$$

(e) Reaction with conc. $\mathbf{H}_{2} \mathbf{S O}_{4}$ - Aniline reacts with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give P -amino benzene sulphonic acid.

$$
\text { (2) } \mathrm{CH}_{2} \xrightarrow{180^{\circ} \mathrm{C}} \mathrm{SO}_{3} \mathrm{SO}_{2}^{\mathrm{N}_{2}}
$$

P-amino Benzene Sulphuric arid
(f)

(g)

Reaction with Sodium - When aniline reacts with sodium at high temperature it gives sodium anilide.

(h) Reaction with Chloroform - When aniline reacts with chloroform it gives phenyl isocyanide.

CHEMISRY (Set-5)

सही उत्तर चुने:-

Choose the correct answer :- (1 mark each)

1. मोलरता को व्यक्त किया जाता है-
(क) ग्राम/लीटर
(ख) लीटर/मोल
(ग) मोल/लीटर
(घ) मोल/1000 ग्रा०

Molarity is expressed in
(a) Gram/litre
(b) Litre/mole
(c) Mole/litre
(d) Mole/1000 gm
2. इनमें से कौन-सा आयनिक ठोस है ?
(क) I_{2}
(ख) LiF
(ग) ड्राई आईस
(घ) हीरा

Which of the following is ionic solid ?
(e) I_{2}
(b) LiF
(c) Dry ice
(d) Diamond
3. क्रोमियम का अयस्क है-
(क) $\mathrm{FeCr}_{2} \mathrm{O}_{4}$
(ख) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{4}$
(ग) PbCrO_{4}
(घ) कोई नहीं

Ore of chromium is
(e)
$\mathrm{FeCr}_{2} \mathrm{O}_{4}$
(b) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{4}$
(c) PbCrO_{4}
(d) None
4. सबसे शक्तिशाली अवकारक है-
(क) F^{-}
(ख) Cl^{-}
(ग) Br^{-}
(घ) I^{-}

The strongest reducing agent is
(e)
F^{-}
(b) Cl^{-}
(c) Br^{-}
(d) I^{-}
5. पहला संक्रमण श्रेणी में कितने तत्व हैं ?
(क) 10
(ख) 18
(ग) 8
(घ) इनमें से कोई नहीं

How many elements are present in first transition series?
(a) 10
(b) 18
(c) 8
(d) None of these
6. गन मेटल है-
(क) $\mathrm{Cu}+\mathrm{Sn}$
(ख) $\mathrm{Cu}+\mathrm{Zn}$
(ग) $\mathrm{Zn}+\mathrm{Sn}$
(घ) $\mathrm{Cu}+\mathrm{Sn}+\mathrm{Zn}$

Gun metal is-
(a) $\mathrm{Cu}+\mathrm{Sn}$
(b) $\mathrm{Cu}+\mathrm{Zn}$
(c) $\mathrm{Zn}+\mathrm{Sn}$
(d) $\mathrm{Cu}+\mathrm{Sn}+\mathrm{Zn}$
7. कार्बन टेट्राक्लोराईड का सही व्यावसायिक नाम है-
(क) पाईरीन
(ख) पायरॉल
(ग) बेंजीन
(घ) इनमें से कोई नहीं

Which one of the following is correct commercial name of carbon tetrachloride ?
(e)
Pyrene
(b) Pyrrol
(c) Benzene
(d) None of these
8. निम्नांकित में कौन शीतक है ?
(क) COCl_{2}
(ख) CCl_{4}
(ग) CF_{4}
(घ) $\mathrm{CF}_{2} \mathrm{Cl}_{2}$

Which one of the following is a refrigerant?
(i)
COCl_{2}
(b) CCl_{4}
(c) CF_{4}
(d) $\mathrm{CF}_{2} \mathrm{Cl}_{2}$
9. निम्नलिखित में कौन सबसे प्रबल लीविस अम्ल है ?
(क) BF_{3}
(ख) BCl_{3}
(ग) BBr_{3}
(घ) BI_{3}

Which one of the following is the strongest lewis acid ?
(f)
BF_{3}
(b) BCl_{3}
(c) BBr_{3}
(d) BI_{3}
10. विधुत अपघट्य का उदाहरण है-
(क) चीनी
(ख) सोडियम एसीटेट
(ग) यूरिया
(घ) बेंजीन

An example of an electrolyte is-
(e)
Sugar
(b) Sodium acetate(c)
Urea
(d) Benzene
11. किसमें अधिकतम अयुग्मित d-इलेक्ट्रॉन है ?
(क) Zn^{2+}
(ख) Fe^{2+}
(ग) Cu^{2+}
(घ) Ni^{2+}

Which of the following has maximum number of unpaired d-electrons?
(f)
Zn^{2+}
(b) Fe^{2+}
(c) Cu^{2+}
(d) Ni^{2+}
12. संक्रमण धातु का सामान्य इलेक्ट्रॉनिक विन्यास है-
(क) $(n-1) d^{1-10} n s^{0-2}$
(ख) $n s^{0-1}(n-1) d^{1-10}$
(ग) $n s^{0-2}(n-1) d^{0-10}$
(घ) इनमें से कोई नहीं

General electronic configuration of transition metal is-
(f)
$(n-1) d^{1-10} n s^{0-2}$
(b) $n s^{0-1}(n-1) d^{1-10}$
(g)
$n s^{0-2}(n-1) d^{0-10}$
(d) None of these
13. निम्नलिखित में कौन अक्रिस्टलीय या बेरवादार ठोस पदार्थ है ?
(क) हीरा
(ख) ग्रेफाइट
(ग) काँच
(घ) साधारण नमक

Which one of the following is non crystalline or amorphous ?
(e)
Diamond
(b) Graphite
(c) Glass
(d) Common salt
14. लुनर कास्टिक का रासायनिक सूत्र है-
(क) $\mathrm{Ag}_{2} \mathrm{~S}$
(ख) $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
(ग) AgNO_{3}
(घ) AgCl

The chemical formula of lunar caustic is-
(e)
$\mathrm{Ag}_{2} \mathrm{~S}$
(b) $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
(c) AgNO_{3}
(d) AgCl
15. निम्न में से किस आयन के रंगीन होने की संभावना है ?
(क) Ni^{2+}
(ख) Cu^{+}
(ग) Sc^{+}
(घ) Zn^{2+}

Which of the following ions is expected to be coloured ?
(e)
Ni^{2+}
(b) Cu^{+}
(c) Sc^{+}
(d) Zn^{2+}
16. निम्न में से किसे हरा थोंथा कहते हैं ?
(क) $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
(ख) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
(ग) $\mathrm{CuSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(घ) इनमें से कोई नहीं

Which one of the following is called green vitriol ?
(e)
$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{CuSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(d) None of these
17. हीलियम का मुख्य स्त्रोत है-
(क) हवा
(ख) रेडियम
(ग) मोनोजाईट
(घ) जल

Main source of helium is-
(e)
Air
(b) Radium
(c) Monazite
(d) Water
18. एल्युमिनियम का अयस्क है-
(क) बॉक्साइट
(ख) हेमेटाइट
(ग) डोलोमाईट
(घ) कोई नहीं

Ore of aluminium is-
(e)
Bauxite
(b) Hematite
(c) Dolomite
(d) None
19. $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ है-
(क) डबल साल्ट
(ख) जटिल लवण
(ग) अम्ल
(घ) भस्म $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is a/an-
(f)
Double salt
(b) Complex salt
(c) Acid
(d) Base
20. आयरन का महत्वपूर्ण अयस्क है-
(क) सिडेराईट
(ख) हेमेटाईट
(ग) पायराईट
(घ) बॉक्साइट

The important ore of iron is-
(e)
Siderite
(b) Haematite
(c) Pyrites
(d) Bauxite
21. पृथ्वी की सतह पर सर्वाधिक प्राप्त तत्व है-
(क) आयरन
(ख) एल्युमिनियम
(ग) कैल्शियम
(घ) सोडियम

Most abundant metal on the surface of earth is-
(e)
Iron
(b) Aluminium
(c) Calcium
(d) Sodium
22. $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ में Fe का प्रसंकरण है।
(क) $s p^{3}$
(ख) $d s p^{3}$
(ग) $s p^{3} d^{3}$
(घ) $d^{2} s p^{3}$

The hybridisation of Fe in $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is-
(e)
$s p^{3}$
(b) $d s p^{3}$
(c) $s p^{3} d^{3}$
(d) $d^{2} s p^{3}$
23. एल्किन का सामान्य सूत्र है-
(क) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
(ख) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
(ग) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
(घ) इनमें से कोई नहीं

General formula of alkene is-
(e)
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
(b) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
(c) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
(d) None of these
24. विटामिन C है-
(क) सीट्रीक अम्ल
(ख) लैक्टिक अम्ल
(ग) एसकोरबिक अम्ल (घ) पारासीटामॉल

Vitamine C is-
(i)
Citric acid
(b) Lactic acid
(c) Ascorbic acid
(d) Paracitamol
25. एल्कनॉल का सामान्य सूत्र है-
(क) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}$
(ख) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{O}$
(ग) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2} \mathrm{O}$
(घ) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}_{2}$

General formula of alkanol is
(k)
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}$
(b) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{O}$
(c) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2} \mathrm{O}$
(d) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}_{2}$
26. विक्टर मेयर परीक्षण नहीं देता है-
(क) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
(ख) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(ग) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
(घ) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

Victor mayer's test is not given by-
(r)
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
(b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
27. ग्लिसरॉल है एक-
(क) प्राइमरी ऐल्कोहॉल
(ख) मोनो हाईड्रिक ऐल्कोहॉल
(ग) सेकेन्ड्री ऐल्कोहॉल
(घ) ट्राईहाईड्रिक ऐल्कोहॉल

Glycerol is a-
(n)
Primary alcohol
(b) Monohydric alcohol
(c) Dihydric alcohol
(d) Trihydric alcohol
28. प्राकृतिक रबर किसका बहुलक है-
(क) ब्यूटाडीन
(ख) एथीन
(ग) स्टाइरीन
(घ) आईसोप्रीन

Natural rubber is a polymer of-
(o)
Butadiene
(b) Ethyne
(c) Styrene
(d) Isoprene

SOLUTION

(1)	(c)	(2)	(b)	(3)	(a)	(4)	(d)	(5)	(a)
(6)	(d)	(7)	(a)	(8)	(d)	(9)	(d)	(10)	(b)
(11)	(b)	(12)	(a)	(13)	(b)	(14)	(c)	(15)	(a)
(16)	(a)	(17)	(c)	(18)	(a)	(19)	(b)	(20)	(b)
(21)	(b)	(22)	(d)	(23)	(a)	(24)	(c)	(25)	(c)
(26)	(a)	(27)	(d)	(28)	(d)				

लघु उत्तरीय प्रश्न:-

Very Short Questions :- (2 marks each)

प्र०1. : Reverse osmosis से आप क्या समझते हैं ?

Q. What do you mean by reverse osmosis ?

उत्तर : जब किसी विलयन के osmotic pressure से अधिक दाब, विलयन पर डाला जाता है तब विलायक के अणु अधिक सांद्रण से कम सांद्रण वाले विलयन की ओर गमन करने लगते हैं। यह प्रक्रिया Reverse osmosis कहलाती है।

Ans. When a pressure greater than osmotic pressure is applied to the solution, the solvent molecules move from higher concentration to lower concentration. This phenomenon is known as reverse osmosis.

प्र०2. : 5% यूरिया के घोल का पारासरण दाब 273 K पर ज्ञात करें।

Q. Calculate the osmotic pressure of 5% solution of urea at $\mathbf{2 7 3 K}$.

उत्तर : परासरण दाब $(\pi)=\frac{\mathrm{W} \times \mathrm{R} \times \mathrm{T}}{\mathrm{M} \times \mathrm{V}}$
$\mathrm{W}=5$ ग्राम, $\mathrm{R}=0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{K}-$ mole,
$\mathrm{V}($ Volume in litre $)=\frac{100}{1000}=0.1$ litre, $\mathrm{M}=60$ ग्राम/मोल, $\mathrm{T}=273 \mathrm{~K}$

$$
\pi=\frac{5 \times 0.0821 \times 273}{60 \times 0.1}=18.67 \mathrm{~atm}
$$

Ans. Osmotic pressure $(\pi)=\frac{\mathrm{W} \times \mathrm{R} \times \mathrm{T}}{\mathrm{M} \times \mathrm{V}}$
$\mathrm{W}=5 \mathrm{gm}, \quad \mathrm{R}=0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{K}-\mathrm{mole}$,
$\mathrm{V}($ Volume in litre $)=\frac{100}{1000}=0.1$ litre, $\mathrm{M}=60 \mathrm{gm} / \mathrm{mole}, \mathrm{T}=273 \mathrm{~K}$

$$
\pi=\frac{5 \times 0.0821 \times 273}{60 \times 0.1}=18.67 \mathrm{~atm}
$$

प्र०3. : सेल अभिक्रिया एवं अर्द्धसेल अभिक्रिया समझाएँ।

Explain cell reaction and half cell reaction.

उत्तर : प्रत्येक गैल्वनी सेल में एनोड एवं कैथोड होते हैं, जिसपर अलग-अलग अभिक्रियाएँ होती हैं। एनोड ऋणात्मक इलेक्ट्रोड एवं कैथोड धनात्मक इलेक्ट्रोड होता है। इन दोनों इलेक्ट्रोडो पर होने वाली अभिक्रियाओं को अर्द्धसेल अभिक्रिया एवं उनके योग को सेल अभिक्रिया कहते हैं। हमेशा एनोड पर ऑक्सीकरण एवं कैथोड पर अवकरण होता है।
एनोड पर अभिक्रिया

$$
\begin{equation*}
\mathrm{Zn}(s) \rightarrow \mathrm{Zn}^{2+}(a q)+2 e^{-} \tag{i}
\end{equation*}
$$

कैथोड पर अभिक्रिया

$$
\begin{equation*}
\mathrm{Cu}^{2+}(a q)+2 e \rightarrow \mathrm{Cu}(s) \tag{ii}
\end{equation*}
$$

(i) और (ii) को जोड़ने पर

$$
\mathrm{Zn}(s)+\mathrm{Cu}^{2+}(a q) \rightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{Cu}(s) \quad \text { सेल अभिक्रिया) }
$$

Ans. Each galvanic cell contains anode and cathode on which different reaction occur. Anode is negative electrode and cathode is positive electrode. The reactions occur on both electrodes are called half cell reactions and the sum of these reactions is called cell reaction. Oxidation occurs at anode and reduction occurs at cathode always.
Reaction at anode

$$
\begin{equation*}
\mathrm{Zn}(s) \rightarrow \mathrm{Zn}^{2+}(a q)+2 e^{-} \tag{i}
\end{equation*}
$$

Reaction at cathode

$$
\begin{equation*}
\mathrm{Cu}^{2+}(a q)+2 e \rightarrow \mathrm{Cu}(s) \tag{ii}
\end{equation*}
$$

On adding (i) and (ii) we get

$$
\mathrm{Zn}(s)+\mathrm{Cu}^{2+}(a q) \rightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{Cu}(s) \text { Cell reaction. }
$$

प्र04. : परिभाषित करें:-
(क) मोलरता (ख) मोललता
Define the following terms:-
(a) Molarity (b) Molality

उत्तर : (क) मोलरता - किसी विलयन के प्रति लीटर में घुले हुए विलेय के मोलों की संख्या, उस विलयन की मोलरता कहलाती है।

$$
\begin{aligned}
& \text { मोलरता }=\frac{\text { विलेय के मोलो की संख्या }}{\text { विलायक का लीटर में आयतन }} \\
& \text { इकाई-मोल/लीटर }
\end{aligned}
$$

(ख) मोललता - विलायक के 1000 ग्रा० (1 किलोग्राम) में घुले हुए विलेय के मोलों की संख्या को विलयन की मोललता कहा जाता है।

$$
\begin{aligned}
& \text { मोलरता }=\frac{\text { विलेय के मोलो की संख्या }}{\text { विलायक का द्रव्यमान (कि०ग्रा० में) }} \\
& \text { इकाई-मोल/कि०ग्र०० }
\end{aligned}
$$

Ans. (a) Molarity - It is defined as the number of moles of solute dissolved in one litre of solution.

$$
\begin{aligned}
\text { Molarity }(\mathrm{M}) & =\frac{\text { Mole of solute }}{\text { Volume of solution (in litre) }} \\
\text { Unit } & \rightarrow \text { Mole/litre }
\end{aligned}
$$

(b)

Molality - It is defined as the number of moles of solute dissolved in one kg of solvent.

$$
\begin{gathered}
\text { Molality }(\mathrm{M})=\frac{\text { Mole of the solute }}{\text { Mass of solvent in } \mathrm{Kg}} \\
\text { Unit } \rightarrow \text { Mole } / \mathrm{Kg}
\end{gathered}
$$

प्र०5. : अर्द्धपारगम्य झिल्ली से आप क्या समझते हैं ?
What is semipermeable membrane?
उत्तर : ऐसी फिल्म (प्राकृतिक या सिन्थेटिक) जिनमें अतिसूक्ष्म छिद्र होते हैं, जिससे विलायक के अणु आसानी से निकल जाते हैं, परंतु विलेय के नहीं। ऐसी झिल्लियों को अर्द्धपारगम्य झिल्ली कहा जाता है।

Ans. A film (Natural or synthetic) which contains a network of submicroscopic pores through which small solvent molecule S (water etc.) can pass, but solute molecules of bigger size can not pass are called semi permeable membrane.

प्र06. : मोनो सैकेराईड क्या होते हैं ?

Q. What are monosaccharides?

उत्तर : वे कार्बोहाईड्रेट जो छोटे अणुओं में जल में अपघटित नहीं हो सकते, मोनो सैकराईड कहलाते हैं। जैसे - पॉली हाइड्रॉक्सी ऐल्डिहाईड या कीटोन। ये ऐल्डोज या कीटोज होते हैं। सामान्य उदाहरण-ग्लूकोज, फ्रक्टोज।

Ans. Those carbohydrates which cannot be hydrolysed to smaller molecules Expolyhydroxy aldehyde or ketone. They may be aldose or ketones. Common examples are glucose, fructose, ribose etc.

प्र०7. : अपचायक शर्कराएँ क्या होती हैं ?

Q. What are reducing sugars?

उत्तर : कार्बोहाइड्रेट जो टाँलेन अभिकर्मक को अपचयित करते हैं तथा फेहलिंग विलयन के साथ लाल अवक्षेप देते हैं, अपचायक शर्कराएँ कहलाते हैं।

सभी मोनो सैकेराईड (ऐल्डोज तथा कीटोज) तथा डाई सैकेराईड (सुक्रोज को छोड़कर) अपचायी शर्कराएँ हैं।

Ans. Carbohydrates which can reduce Tollen's reagent and give red precipitate with Fehling's solution are called reducing sugar. All monosaccharides (both aldoses and ketoses) and disaccharides (except sucrose) are reducing sugars.
प्र०8. : क्यों Fe संक्रमण धातु है लेकिन Na नहीं ?

Q. Why Fe is transition metal but sodium is not ?

उत्तर : Fe एक d -ब्लॉक तत्व है और यह संक्रमण धातु के गुण जैसे परिवर्ती संयोजकता, रंगीन आयन तथा संकुलों का निर्माण दिखाता है।

लेकिन सोडियम s-ब्लॉक तत्व है। यह संक्रमण धातु के जैसा गुण नहीं दिखाता है।
Ans. Fe is a d-orbital element and show properties of transition metals like variable valency, coloured ion, complex formation etc.

But sodium is s-block element. It does not show the properties of transition metal.

प्र09. : नीचे दिये गये अभिक्रियाओं में $\mathrm{A}, \mathrm{B}, \mathrm{C}$ एवं D की पहचान करें।
Q. From the given reactions, identify A, B, C and D.

Ans.

प्र०10.: (क) जटिल लवण $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ का I.U.P.A.C. नाम लिखें।
(ख) इस जटिल लवण में Fe की E.A.N. (प्रभावी परमाणु संख्या) की गणना करें।
Q. (a) Give the I.U.P.A.C. name of the complex salt $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$.
(b) Calculate E.A.N. (Effective atomic number) of Fe in this complex salt.

उत्तर : (क) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ - पौटेशियम हेक्सा सायनो फैरेट (III)
(ख) माना कि Fe की ऑक्सीकरण संख्या $=x$

$$
\begin{array}{r}
1 \times 3+x \times 1+(-1) \times 6=0 \\
x=+3
\end{array}
$$

$$
\begin{aligned}
\mathrm{EAN}= & \mathrm{Fe}^{3+} \text { में इलेक्ट्रॉन की संख्या }+6 \mathrm{CN}^{-} \text {आयन द्वारा प्राप्त इलेक्ट्रॉन } \\
= & (26-3)+12=35 \\
& \therefore \mathrm{EAN}=35
\end{aligned}
$$

Ans. (a) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightarrow$ Potassium Hexa-cyanoferrate(III)
(b) Let the oxidation no. of $\mathrm{Fe}=x$

$$
\begin{aligned}
& 1 \times 3+x \times 1+(-1) \times 6=0 \\
& x=+3 \\
& \text { EAN }=\text { No. of electron in } \mathrm{Fe}^{3+}+ \text { No. of electron in } 6 \mathrm{CN}^{-} \text {ion } \\
&=(26-3)+12=35 \\
& \therefore \text { EAN }=35
\end{aligned}
$$

प्र०11.: निम्नलिखित के I.U.P.A.C. नाम बताइये।
Q. Write the I.U.P.A.C. name of following.
(1)

(2)

उत्तर : (1) N, N-डाई मिथाईलइथेनामाईन
(2) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\stackrel{2}{\mathrm{C}} \mathrm{H}-\stackrel{3}{\mathrm{C}} \mathrm{H}_{3} \quad$ 2-इथॉक्सीप्रोपेन

Ans. (1) N, N-Dimethylethanamine
(2)
 2-Ethoxypropane

प्र०1. : भौतिक अधिशोषण एवं रासायनिक अधिशोषण में क्या अंतर है ?

Q. What is difference between physical adsorption and chemical adsorption ?

उत्तर : भौतिक अधिशोषण एवं रासायनिक अधिशोषण में अंतर:-

भौतिक अधिशोषण	रासायनिक अधिशोषण
1. यह अंतर आण्विक वाण्डरवाल बलों के कारण होता है। 2. यह विशिष्ट नहीं होता है। 3. निम्न तापक्रम पर अनुसरण करता है। तापक्रम बढ़ने से यह घटता है। 4. एक्टीवेशन ऊर्जा की आवश्यकता नहीं होती है। 5. उसे उच्च दाब बढ़ाता है तथा दाब घटने पर विअधिशोषण होता है। 6. यह अवशोषक पर बहु सतह बनाता है।	1. यह रासायनिक बंधन के निर्माण के कारण होता है। 2. यह विशिष्ट होता है। 3. उच्च तापक्रम पर अनुसरण करता है। तापक्रम बढ़ने से यह बढ़ता है। 4. उच्च एक्टीवेशन ऊर्जा की आवश्यकता होती है। 5. इसे भी उच्च दाब बढ़ाता है। दाब घटने का इस पर प्रभाव नहीं पड़ता है। 6. यह अवशोषक पर एकल सतह बनाता है।

Ans. Difference between physical adsorption and chemical adsorption:-

प्र०2. : स्थिर आयतन पर $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ का वियोजन प्रथम कोटि की अभिक्रिया है।

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

बंद बर्तन में वियोजन आरंभ होने के 30 मिनट बाद कुल उत्पन्न दाब 284.5 mm of Hg पाया गया और पूर्ण होने पर कुल दाब 584.5 mm of Hg पाया गया। अभिक्रिया का वेग स्थिरांक निकालें।
Q. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(g)$ is a first order reaction.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

After 30 min from the commencement of decomposition in a closed vessel, the total pressure developed is found to be 284.5 mm of $\mathbf{H g}$ and on the completion the total pressureis 584.5 mm of $\mathbf{H g}$. Calculate the rate constant of the reaction.
उत्तर : $2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$

$$
\mathrm{N}_{2} \mathrm{O}_{5}(g) \rightarrow 2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)
$$

समय $\mathrm{t}=0$ पर \quad Po $\quad 0 \quad 0$
समय $\mathrm{t}=30$ मिनट पर $\quad \mathrm{Po}-\mathrm{P} \quad$ 2P $\quad \frac{\mathrm{P}}{2}$
अभिक्रिया पूरा होने पर $0 \quad 2 \mathrm{Po} \quad \frac{\mathrm{Po}}{2}$
समय $\mathrm{t}=30$ मिनट पर कुल दाब $=\mathrm{Po}-\mathrm{P}+2 \mathrm{P}+\frac{\mathrm{P}}{2}$

$$
\begin{align*}
&=\mathrm{Po}+\frac{3 \mathrm{P}}{2} \\
& \mathrm{Po}+\frac{3 \mathrm{P}}{2}=284.5 \tag{i}
\end{align*}
$$

अभिक्रिया पूरा होने पर कुल दाब $=2 \mathrm{Po}+\frac{\mathrm{Po}}{2}$

$$
=\frac{5 \mathrm{Po}}{2}
$$

$$
\begin{gathered}
\frac{5 \mathrm{Po}}{2}=584.5 \\
\mathrm{Po}=\frac{584.5 \times 2}{5}=233.8 \\
\mathrm{Po}=233.8 \mathrm{~mm} \text { of } \mathrm{Hg}
\end{gathered}
$$

समी॰(i) में Po का मान रखने पर

$$
\begin{aligned}
& 233.8+\frac{3 P}{2}=284.5 \\
& \frac{3 P}{2}=284.5-233.8
\end{aligned}
$$

$$
\begin{aligned}
\frac{3 P}{2} & =50.7 \\
\mathrm{P} & =\frac{50.7 \times 2}{3}=33.8 \mathrm{~mm} \text { of } \mathrm{Hg} \\
\mathrm{~K} & =\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{Po}}{\mathrm{Po}-\mathrm{P}} \\
& =\frac{2.303}{30} \log \frac{233.8}{233.8-33.8} \\
& =\frac{2.303}{30} \log \frac{233.8}{200} \\
& =\frac{2.303}{30} \log (233.8-\log 200) \\
& =\frac{2.303}{30}(2.3688-2.301) \quad[\because \log 233.8=2.3688, \log 200=2.301] \\
& =\frac{2.303}{30} \times 0.0648 \\
& =\frac{0.1561}{30} / \mathrm{min}^{2} \\
& =0.00520 \mathrm{~min}^{-1} \\
& =5.2 \times 10^{-3} \mathrm{~min}^{-1}
\end{aligned}
$$

Ans.

$$
\begin{aligned}
& 2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \\
& \mathrm{N}_{2} \mathrm{O}_{5}(g) \rightarrow 2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)
\end{aligned}
$$

At $\mathrm{t}=0$	Po	0	0
At $\mathrm{t}=30 \mathrm{~min}$	$\mathrm{Po}-\mathrm{P}$	2 P	$\frac{\mathrm{P}}{2}$

At completion

$$
0 \quad \text { 2Po } \quad \frac{\text { Po }}{2}
$$

At $t=30 \mathrm{~min}$, total pressure $=\mathrm{Po}-\mathrm{P}+2 \mathrm{P}+\frac{\mathrm{P}}{2}$

$$
\begin{align*}
& =\mathrm{Po}+\frac{3 \mathrm{P}}{2} \\
\mathrm{Po}+\frac{3 \mathrm{P}}{2} & =284.5 \tag{i}
\end{align*}
$$

At completion, total pressure $=2 \mathrm{Po}+\frac{\mathrm{Po}}{2}$

$$
=\frac{5 \mathrm{Po}}{2}
$$

$$
\begin{gathered}
\frac{5 \mathrm{Po}}{2}=584.5 \\
\mathrm{Po}=\frac{584.5 \times 2}{5}=233.8 \\
\mathrm{Po}=233.8 \mathrm{~mm} \text { of } \mathrm{Hg}
\end{gathered}
$$

Putting the value of Po in equation.

$$
\begin{aligned}
& 233.8+\frac{3 \mathrm{P}}{2}=284.5 \\
& \frac{3 \mathrm{P}}{2}=284.5-233.8 \\
& \frac{3 \mathrm{P}}{2}=50.7 \\
& \mathrm{P}=\frac{50.7 \times 2}{3}=33.8 \\
& \mathrm{~K}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{Po}}{\mathrm{Po}-\mathrm{P}} \\
&=\frac{2.303}{30} \log \frac{233.8}{233.8-33.8} \\
&=\frac{2.303}{30} \log \frac{233.8}{200} \\
&=\frac{2.303}{30} \log (233.8-\log 200) \\
&=\frac{2.303}{30}(2.3688-2.301) \quad[\because \log 233.8=2.3688, \log 200=2.301] \\
&=\frac{2.303}{30} \times 0.0648 \\
&=\frac{0.1561}{30} / \mathrm{min}^{2} \\
&=0.00520 \mathrm{~min}-1 \\
&=5.2 \times 10^{-3} \mathrm{~min}^{-1} \\
&
\end{aligned}
$$

प्र०3. : आयोडीन के मुख्य स्त्रोत क्या हैं ? समुद्री घास से आयोडिन के निष्कासण का वर्णन करें ?
Q. What are the main sources of iodine? How iodine extracted from sea weeds.

उत्तर : आयोडीन के मुख्य स्त्रोत-सक्रिय तत्व होने के कारण आयोडीन प्रकृति में मुक्त अवस्था में नहीं पाया जाता है। इसके मुख्य स्त्रोत हैं-(क) समुद्री घास (ख) चीली साल्ट पीटर (ग) प्राकृतिक ब्राईन
(क) समुद्री घास से आयोडीन का उत्पादन - लैमिनोरिया किस्म की समुद्री घास में आयोडीन उपस्थित रहता है। समुद्री घास को अच्छी तरह सूखाकर इसे गहरे गड्ढ़े में सावधानीपूर्वक जलाया जाता है, ताकि उपस्थित आयोडीन नष्ट नहीं हो। जलाने के फलस्वरूप प्राप्त राख को केल्प कहा जाता है, जिसमे 0.4 से 1.3% तक आयोडीन रहता है। केल्प को जल में घुलाकर घोल का आंशिक रवाकरण करने से जल में कम घुलनशील अवयव $\left(\mathrm{KCl}, \mathrm{K}_{2} \mathrm{SO}_{4}, \mathrm{NaCl}\right.$ आदि) रवाकृत होकर बाहर निकल जाते हैं, जबकि जल में अधिक घुलनशील KI एवं NaI मातृद्रव में शेष बचे रह जाते हैं। मातृद्रव में सान्द्र $\mathrm{H}_{2} \mathrm{SO}_{4}$ मिलाकर क्षारीय सल्फाईडो से मुक्त गंधक को बर्तन के पेंदें पर बैठने दिया जाता है। अवक्षेपित गंधक को छानकर हटा दिया जाता है एंव छनित द्रव को मैगनीज डाईऑक्साईड $\left(\mathrm{MnO}_{2}\right)$ एवं सांद्र $\mathrm{H}_{2} \mathrm{SO}_{4}$ के साथ लोहे के वकयंत्र में मिलाकर मिश्रण को गर्म किया जाता है। ऐसा करने से प्रतिक्रिया के फलस्वरूप आयोडीन वाष्प के रूप में निकलता है, जिसे चीनी मिट्टी की बनी विशेष प्रकार की नलियों में जिसे एल्यूडेल कहा जाता है, संघनित करके ठोस के रूप में जमा कर लिया जाता है।

$$
2 \mathrm{NaI}+\mathrm{MnO}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{NaHSO}_{4}+\mathrm{MnSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \downarrow
$$

प्राप्त आयोडीन को KI के साथ उर्ध्वपातित करके शुद्ध आयोडीन प्राप्त किया जाता है।

$$
\begin{array}{r}
2 \mathrm{KI}+\mathrm{Cl}_{2} \xrightarrow{\Delta \mathrm{H}} 2 \mathrm{KCl}+\mathrm{I}_{2} \\
2 \mathrm{KI}+\mathrm{Br}_{2} \xrightarrow{\Delta \mathrm{H}} 2 \mathrm{KBr}+\mathrm{I}_{2}
\end{array}
$$

Ans. Main sources of iodine:-
Due to its reactivity iodine is not found in nature in free state. Its main sources are (i) Sea weeds (ii) Chile salt peter (iii) Natural brine

Extraction of Iodine from sea weeds - Sea weed, lamineria contains iodine. SEa weed is well dried and burnt in deep pits carefully so that iodine do not get destroyed. The obtained ash is called kalp, which contains 0.4 to 1.3% iodine. Kelp is dissolved in water and solution is partially crystalised when less soluble KI and NaI remain in the mother liquor. Conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added when basic sulphides deposit at the bottom, which is filtered and removed. Now the filtrate is mixed with MnO_{2} and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and heated in an iron vessel. Iodine vapourises due to the reaction and is collected in "Aludel", Iodine is now collected as solid after condensation.

$$
2 \mathrm{NaI}+\mathrm{MnO}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{NaHSO}_{4}+\mathrm{MnSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \downarrow
$$

It is treated with KI to obtain pure iodine.

$$
\begin{aligned}
2 \mathrm{KI}+\mathrm{Cl}_{2} \xrightarrow{\Delta \mathrm{H}} 2 \mathrm{KCl}+\mathrm{I}_{2} \\
2 \mathrm{KI}+\mathrm{Br}_{2} \xrightarrow{\Delta \mathrm{H}} 2 \mathrm{KBr}+\mathrm{I}_{2}
\end{aligned}
$$

प्र०4. : मिथाईल अल्कोहॉल एवं ईथाईल अल्कोहॉल के बीच का अंतर स्पष्ट करें।

Q. Differentiate between Methyl alcohol and Ethyl alcohol.

उत्तर : मिथाईल अल्कोहॉल एवं ईथाईल अल्कोहॉल में निम्नलिखित अंतर है:-

मिथाईल अल्कोहॉल	ईथाईल अल्कोहॉल
(i) इसका सूत्र है $\mathrm{CH}_{3} \mathrm{OH}$ (ii) यह आयोडोफॉर्म नहीं बनाता है। $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{I}_{2}+\mathrm{NaOH} \rightarrow$ कोई प्रतिक्रिया नहीं (iii) मिथाईल एसीटेट बनाता है। $\begin{aligned} & \mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \\ & \mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$ (iv) $\mathrm{H}_{2} \mathrm{SO}_{4}$ एवं $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ से प्रतिक्रिया कराने पर पहले फॉर्मल्डिहाईड बनाता है फिर फॉर्मिक अम्ल बनता है। $\begin{aligned} & \mathrm{CH}_{3} \mathrm{OH} \xrightarrow[\mathrm{~K}_{2} \mathrm{~K}_{2} \mathrm{O}_{7}]{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{HCHO} \xrightarrow[\mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}]{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{HCOOH} \end{aligned}$	(i) इसका सूत्र है $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ii) यह आयोडोफॉर्म बनाता है $\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+4 \mathrm{I}_{2}+6 \mathrm{NaOH} \rightarrow \\ & \mathrm{CHI}_{3}+5 \mathrm{NaI}+\mathrm{HCOONa}+5 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ (iii) ईथाईल एसीटेट बनता है। $\begin{array}{r} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \\ \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \end{array}$ (iv) $\mathrm{H}_{2} \mathrm{SO}_{4}$ एवं $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ से प्रतिक्रिया कराने पर पहले एसीटल्डिहाईड बनता है, फिर एसीटिक अम्ल बनता है। $\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow[\mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}]{\mathrm{H}_{3}} \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow[\mathrm{~K}_{2} \mathrm{SO}_{2} \mathrm{O}_{7}]{\mathrm{H}_{3}} \mathrm{CH}_{3} \mathrm{COOH} \end{aligned}$

Ans. Differentiate between Methyl alcohol and Ethyl alcohol:-

Methyl Alcohol	Ethyl Alcohol
(i) General formula $\mathrm{CH}_{3} \mathrm{OH}$	(i) General formula $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.
(ii) Iodoform is not obtained. $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{I}_{2}+\mathrm{NaOH} \rightarrow$ No reaction	(ii) Iodoform is obtained $\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+4 \mathrm{I}_{2}+6 \mathrm{NaOH} \rightarrow \\ & \mathrm{CHI}_{3}+5 \mathrm{NaI}+\mathrm{HCOONa}+5 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
(iii) Methyl acetate is formed. $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}}$	(iii) Ethyl acetate is formed. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}}$
$\mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$
(iv) Reaction with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$. First formaldehyde is formed then formic acid is formed.	(iv) Reaction with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$. First acetaldehyde is formed then acetic acid, is formed.
$\mathrm{CH}_{3} \mathrm{OH} \xrightarrow[\mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}]{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow[\mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}]{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{HCHO} \xrightarrow[\mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}]{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{HCOOH}$	$\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow[\mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}]{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3} \mathrm{COOH}$

CHEMISRY (Set-6)

सही उत्तर चुने:-

Choose the correct answer :- (1 mark each)

1. ग्रेफाइट का संरचना क्या है ?
(क) टेट्राहेड्रल
(ख) आक्टोहेड्रल
(ग) हेक्सागोनल
(घ) क्युबिक

Which is the structure of graphite ?
(a) Tetrahedral
(b) Octahedral
(c) Hexagonal
(d) Cubic
2. अन्ता केन्द्रित एकक कोष्ठिका में कण के आयतन का अनुपात है-
(क) 0.32
(ख) 0.68
(ग) 0.35
(घ) 0.65

The fraction of volume occupied in a body centred cubic unit cell is-
(f) 0.32
(b) 0.68
(c) 0.35
(d) 0.65
3. वाष्प घनत्व का आपेक्षिक अवनयन समानुपाती होता है-
(क) घुल्य के माल प्रभाज
(ख) घोलक के मोल प्रभाज
(ग) घोलक के माललता
(घ) घोल के नॉमलिटी

The relative lowering of V.P. of solute is proportional to-
(f)
Mole fraction of solute
(b) Mole fraction of solvent
(c) Molality of the solvent
(d) Normality of solution
4. एक किलोग्राम जल में कितना द्रव्यमान इथनॉल डाला जाय कि इथनॉल का मोल प्रभाज 0.25 हो जाऐगा?
(क) 63.89 ग्राम
(ख) 6.39 ग्राम
(ग) 638.89 ग्राम
(घ) 683.89 ग्राम

What mass of ethanol is added to 1.0 kg water to have the mole fraction of ethanol equal to 0.25 ?
(f)
63.89 gm
(b) 6.39 gm
(c) $638.89 \mathrm{gm}(\mathrm{d}) \quad 683.89$
gm
5. निम्नांकित में कौन अभिव्यक्ति सही है ?
(क) $\mathrm{I}=\mathrm{Qt}$
(ख) $I=\frac{Q}{t}$
(ग) $\mathrm{I}=\frac{1}{\mathrm{Qt}}$
(घ) $I=\frac{t}{Q}$

Which of the following expression is true ?
(a) $\mathrm{I}=\mathrm{Qt}$
(b) $I=\frac{Q}{t}$
(c) $I=\frac{1}{\mathrm{Qt}}$
(d) $I=\frac{t}{Q}$
6. जंग लगने से बचने के लिए कौन धातु ऑक्साइड का बचाऊ सतह बनाता है ?
(क) Cu
(ख) Ag
(ग) Au
(घ) Al

Which of the following metals form a protective layer of oxide to prvent corrosion ?
(a) Cu
(b) Ag
(c) Au
(d) Al
7. प्रथम कोटि प्रतिक्रिया $\mathrm{A} \rightarrow \mathrm{B}$ के लिए अर्द्ध-जीवन काल बराबर होता है-
(क) $\mathrm{t}_{1 / 2}=0.693 \mathrm{~K}$
(ख) $\mathrm{t}_{1 / 2}=0.693 \ln \mathrm{~K}$
(ग) $\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{~K}}$
(घ) $\mathrm{t}_{1 / 2}=\frac{\log _{2}}{\mathrm{~K}}$

The half life of a first order reaction $\mathrm{A} \rightarrow \mathrm{B}$, is given as -
(f)
$t_{1 / 2}=0.693 \mathrm{~K}$
(b) $\mathrm{t}_{1 / 2}=0.693 \ln \mathrm{~K}$
(c) $\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{~K}}$
(d) $t_{1 / 2}=\frac{\log _{2}}{K}$
8. उत्प्रेरक पदार्थ हो जो-
(क) प्रतिफल के संतुलन सान्द्रण को बढ़ाता है
(ख) एक्टिवेशन ऊर्जा को कम करता है
(ग) प्रतिक्रिया मैकेनिज्म को परिवर्त्तित नहों करता है
(घ) अभिकारकों के टकराने की तीव्रता बढ़ा देता है
A catalyst is a substance which -
(j) Increases the equilibrium concentration of the products
(b) Decreases the energy of activation
(c) Does not alter the reaction mechanism
(d) Increases the frequency of collision of reacting species
9. कोलॉइड कण का व्या इसके बीच है-
(क) 1 से 100 nm
(ख) 10 से 100 pm
(ग) 1 से 100 mm
(घ) 1 से 100 pm

The colloidal particles have diameter ranging from-
(g)
1 to 100 nm
(b) 10 to 100 pm
(c) 1 to 100 mm
(d) 1 to 100 pm
10. भौतिक अधिशोषण-
(क) एडजोरबेन्ट तथा एकजोरबेट के बीच कमजोर आकर्षण बल रहता है
(ख) एडजोरबेन्ट तथा एकजोरबेट के बीच रासायनिक अभिक्रिया होती है
(ग) यह स्वभाव से इरवरसिबल है
(घ) तापक्रम बढ़ाने से बढ़ता है
Physical adsorption -
(f)

Involues weak interaction between adsorbent and adsorbate
(b) Involves chemical interaction between adsorbent and adsorbate
(c) Is irreversible in nature
(d) Increases with increase in temperature
11. एलूमिना के विद्युत विच्छेदन में क्रायोलाइट मिला दिया जाता है-
(क) एलूमिना के द्रवनांक को कम करने के लिए
(ख) विद्युत चालकता कम करने के लिए
(ग) एनोड प्रभाव को कम करने के लिए
(घ) एलूमिना से अशुद्धियाँ दूर करने के लिए
In the electrolysis of alumina, cryolite is added to-
(g)

Lower the m.p. ofalumina
(b) Decreases the electrical conductivity
(c) Minimise the anode effect
(d) Remove impurities from alumina
12. निम्नांकित में कौन भारतीय सॉल्टपीटर के नाम जाना जाता है ?
(क) LiNO_{3}
(ख) NaNO_{3}
(ग) KNO_{3}
(घ) RbNO_{3}

Which of the following is known as Indian Saltpetre ?
(h)
LiNO_{3}
(b) NaNO_{3}
(b) KNO_{3}
(d) RbNO_{3}
13. जल के कड़ापन का कारण है-
(क) $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$
(ख) HCO_{3}^{-}
(ग) Na^{+}
(घ) K^{+}

Hardness of water is due to-
(f)
$\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$
(b) HCO_{3}^{-}
(c) Na^{+}
${ }^{`}(d) \mathrm{K}^{+}$
14. अमोनिया किस रुप में कार्य करता है-
(क) उदासीन जाति
(ख) लूइस अम्ल
(ग) लूइस भस्म
(घ) द्विधार्मी हाइड्राइड

Ammonia acts as a-
(f)
Neutral species
(b) Lewis acid
(c) Lewis base
(d) Amphoteric hydride
15. जब कॉपर पर तनु HNO_{3} की प्रतिक्रिया होती है तो कौन गैस निकलता है-
(क) NO
(ख) NO_{2}
(ग) $\mathrm{N}_{2} \mathrm{O}_{3}$
(घ) $\mathrm{N}_{2} \mathrm{O}_{5}$

The gas liberated when copper reacts with dilute HNO_{3} is -
(f)
NO
(b) NO_{2}
(c) $\mathrm{H}_{2} \mathrm{Se}$
(d) $\mathrm{H}_{2} \mathrm{Te}$
16. इन में किसका क्वथनांक कम होता है ?
(क) $\mathrm{H}_{2} \mathrm{O}$
(ख) $\mathrm{H}_{2} \mathrm{~S}$
(ग) $\mathrm{H}_{2} \mathrm{Se}$
(घ) $\mathrm{H}_{2} \mathrm{Te}$

Which of the following has the lowest boiling point?
(f)
$\mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{H}_{2} \mathrm{~S}$
(c) 0
(d) 2
17. Cr का महत्तम आक्सीकरण अवस्था है-
(क) +4
(ख) +5
(ग) +6
(घ) +7

The highest oxidation state of Cr is -
(f)
$+4$
(b) +5
(c) +6
(d) +7
18. निम्नांकित में हवा में आयतन के अनुसार किस अक्रिय गैस पर्याप्पता अधिक है ?
(क) हिलियम
(ख) नियम
(ग) ऑरगन
(घ) क्रिपटन

Which of the following inort gases has the largest abundance (by volume) in air?
(f)
Hiliumn
(b) Neon
(c) Argon
(d) Krypton
19. किसका विटामिन B_{12} एक जटिल यौगिक है-
(क) CO^{2+}
(ख) CO^{3+}
(ग) Cr^{2+}
(घ) Cr^{3+}

Vitamin B_{12} is a complex of -
(g)
CO^{2+}
(b) CO^{3+}
(c) Cr^{2+}
(d) Cr^{3+}
20. इनमें से कौन-
(क) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
(ख) $\mathrm{Cu}\left[\mathrm{CdCl}_{4}\right]$
(ग) $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$
(घ) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

Which of the following is a double salt?
(f)
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
(b) $\mathrm{Cu}\left[\mathrm{CdCl}_{4}\right]$
(c) $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
21. ब्युट 1 -ईन 3 -आइन में सिग्मा तथा पाई बंधों की संख्या क्या है ?
(क) 5 सिग्मा तथा 5 पाई
(ख) 7 सिग्मा तथा 3 पाई
(ग) 8 सिग्मा तथा 2 पाई
(घ) 6 सिग्मा तथा 4 पाई

The number of sigma and pi bonds in 1-butene- 3-yne are-
(f)
5 sigma and 5 pi
(b) 7 sigma and 3 pi
(c) 8 sigma and 2 pi
(d) 6 sigma and 4 pi
22. वैसा यौगिम जिसमें कार्बन-कार्बन के बीच की दूरी महत्तम हो-
(क) इथैन
(ख) इथीन
(ग) इथाइन
(घ) बेंजिन

The compound in which the distrce between tow adjacent carbon atoms is the largest is-
(f) Ethone
(b) Ethene
(c) Ethyne
(d) Benzene
23. इनमें से कौन स्थाई कार्बोकेटाइन है ?
(क) $\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}$
(ख) $\mathrm{R} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
(ग) $\mathrm{R}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}$
(घ) $\mathrm{R}_{3} \stackrel{+}{\mathrm{C}}$

Which of the following is stable carbocation?
(f)
$\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}$
(b) $\mathrm{R} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
(c) $\mathrm{R}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}$
(d) $\mathrm{R}_{3} \stackrel{+}{\mathrm{C}}$
24. अल्कोहल के निर्जलीकरण का क्रम है-
(क) $1^{0}>2^{0}>3^{0}$
(ख) $1^{0}>2^{0}<3^{0}$
(ग) $1^{0}<2^{0}>3^{0}$
(घ) $1^{0}<2^{0}<3^{0}$

The order of dehydration of alcohol is -
(j) $\quad 1^{0}>2^{0}>3^{0}$
(b) $1^{0}>2^{0}<3^{0}$
(c) $1^{0}<2^{0}>3^{0}$
(d) $1^{0}<2^{0}<3^{0}$
25. इनमें से किसमें एस्टर बंधन है ?
(क) नॉयलन
(ख) PVC
(ग) टेरीलिन
(घ) वैकेलाइट

Which of the following has ester linkage?
(l)
Nylon
(b) PVC
(c) Terylene
(d) Bakelite
26. केवल RNA में इनमें से कौन भस्म उपस्थित है ?
(क) एडेनिन
(ख) गुआनीन
(ग) युरेसिल
(घ) थाइमिन

Which of the following bases is present in RNA only?
(s)
Aderine
(b) Guanine
(c) Uracil
(d) Thymine
27. पेंसिलिन है-
(क) हार्मोन
(ख) दर्द निवारक
(ग) एण्टिवायटिक
(घ) एन्टीवॉडी

Penicillin is-
(p)
Harmone
(b) Analgesics
(c) Antibiotic(d) Antibody
28. बेंजिन डायएजोनियम क्लोराइड के जलीय विलयन को गर्म करने पर प्राप्त होता है-
(क) बेंजिन
(ख) एनिलीन
(ग) फेनॉल
(घ) एमाइड

On warming an aqueous solution of benzene-diazonium chloride, the product obtained is-
(q)
Benzene
(b) Aniline
(c) Phenol
(d) Amide

SOLUTION

(1)	(c)	(2) (b)	(3)	(a)	(4)	(c)	(5)	(b)
(6)	(d)	(7) (c)	(8)	(b)	(9)	(a)	(10)	(a)
(11)	(a)	(12) (c)	(13)	(a)	(14)	(c)	(15)	(a)
(16)	(d)	(17) (c)	(18)	(c)	(19)	(b)	(20)	(c)
(21)	(b)	(22) (a)	(23)	(d)	(24)	(d)	(25)	(c)
(26)	(c)	(27) (c)	(28)	(c)				

लघु उत्तरीय प्रश्नः-

Very Short Questions :- (2 marks each)

प्र०1. :
Q1. Why is phosphorus doped sizlicon is semiconductor?
उत्तर : जब सिलिकन में अम्ल मात्रा में फास्फोरस का डोषन किया जाता है तो विद्युत चालकाता बढ़ जाती है। फास्फोरस के साथ सिलिकन का डोपन करने पर सिलिकन के संरचना के कुछ जगहों पर फास्फोरस का परमाणु आ जाता है। फास्फोरस का संयोजकता एलेक्ट्रान पाँच है। यह सिलिकन के चार संयोजकता एलेक्ट्रॉन के साथ सहसंयोजी बंध बनाता है जबकि फस्फोरस का पाँचवा एलेक्ट्रान बंधन में भाग नहीं लेता है। यह एलेक्ट्रॉ स्वतंत्र होता है जो विद्युत चालकता के लिए उत्तरदायी है।

Ans. When silicon is doped with small amount of phosphorus, its electrical conductivity increases. When silicon is doped with phosphorus, some of the positions in the lattice are substituted by phosphorus atoms. Phosphorus has five valence electrons. After forming four covalent bonds with silicon, one excess electron is left on phosphorus. This electron is not in volved in bonding and is delocolised. This contributes to electrical conductivity
प्र02. : एक प्रथम कोटि प्रतिक्रिया का दर स्थिरांक $1.15 \times 10^{-3} \mathrm{~s}^{-1}$ है। अभिकारक के 5 ग्राम को घटकर 3 ग्राम होने में कितना समय लगेगा ?
Q. A first order reaction has a rate constant $1.15 \times 10^{-3} \mathbf{s}^{-1}$. How long will 5 gm of this reactant to reduce to $\mathbf{3} \mathbf{g m}$?

उत्तर : प्रथम कोटि प्रतिक्रिया के लिए-दर स्थिरांक का अभिव्यक्ति है-

$$
\mathrm{K}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{R}_{0}}{\mathrm{R}}
$$

यहाँ, $\mathrm{K}=1.15 \times 10^{-3} \mathrm{~s}^{-1}, \mathrm{R}_{0}=5 \mathrm{gm}, \mathrm{r}=3 \mathrm{gm}$
$\therefore \quad 1.15 \times 10^{-3}=\frac{2.303}{\mathrm{t}} \log \frac{5}{3}$

$$
=\frac{2.303}{t}[\log 5-\log 3]
$$

$$
=\frac{2.303}{\mathrm{t}}[0.699-0.477]
$$

Or, $1.15 \times 10^{-3}=\frac{2.303}{\mathrm{t}} \times 0.222$
$\therefore \mathrm{t}=\frac{2.303 \times 0.222}{1.15 \times 10^{-3}} \mathrm{sec}$.

$$
\begin{aligned}
=\frac{2.303 \times 0.222 \times 1000}{1.15} & =445 \mathrm{sec} \\
& =7 \mathrm{~min} .41 \mathrm{sec}
\end{aligned}
$$

(ख) अभिक्रिया की अर्द्ध-आयु $\left(\mathbf{t}_{1 / 2}\right)$ - वह समय जिसमें अभिकारक की सान्द्रता घटकर आधी हो जाती है, अभिक्रिया की अर्द्ध आयु कहलाता है।
प्रथम कोटि की अभिक्रिया की अर्द्ध-आयु

$$
t_{1 / 2}=\frac{0.693}{k}
$$

जहाँ $\mathrm{K}=$ प्रथम कोटि की अभिक्रिया का वेग स्थिरांक है।
Ans. The expression for rate constant of first order reaction is-

$$
\mathrm{K}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{R}_{0}}{\mathrm{R}}
$$

Here, $\mathrm{K}=1.15 \times 10^{-3} \mathrm{~s}^{-1}, \mathrm{R}_{0}=5 \mathrm{gm}, \mathrm{r}=3 \mathrm{gm}$

$$
\begin{aligned}
& \therefore \quad \begin{aligned}
& 1.15 \times 10^{-3}=\frac{2.303}{\mathrm{t}} \log \frac{5}{3} \\
&=\frac{2.303}{\mathrm{t}}[\log 5-\log 3] \\
& 1.15 \times 10^{-3}=\frac{2.303}{\mathrm{t}}[0.699-0.477] \\
&=\frac{2.303}{\mathrm{t}} \times 0.222 \\
& \therefore \quad \mathrm{t}=\frac{2.303 \times 0.222}{1.15 \times 10^{-3}} \mathrm{sec} \\
&=\frac{2.303 \times 0.222}{1.15} \times 1000 \\
&=445 \mathrm{sec} \\
&=7 \mathrm{~min} .41 \mathrm{sec}
\end{aligned}
\end{aligned}
$$

प्र० 3.: फूल का क्लोरीन द्वारा बिरंजन स्थायी होता है जबकि स्लफरडायऑक्साइड द्वारा विरंजन अस्थायी होता है, क्यों ?
Q. Bleaching of flowers by chlorine is permanent but that of sulphurdioxide is temporary, why?
उत्तर : $\mathbf{C l}_{\mathbf{2}}$ का विरंजक स्वभाव:- नमी की उपस्थिति में क्लोरीन विरंजक की तरह कार्य करता है। क्लोरीन जल के साथ प्रतिक्रिया कर HCl तथा HClO बनाता है। HCHO स्थायी नहीं है, अतः यह टूटकर नवजात ऑक्सीजन उत्पन्न करता है।

$$
\begin{aligned}
\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{HCl}+\mathrm{HClO} \\
\mathrm{HClO} & \rightarrow \mathrm{HCl}+\mathrm{O} \\
\text { रंगीन फूल }+[\mathrm{O}] & \rightarrow \text { रंगहीन फूल }
\end{aligned}
$$

क्लोरीन का विरंजन स्थायी होता है। यह क्लोरीन के आवर्त कारक गुण के कारण होता है। $\mathbf{S O}_{\mathbf{2}}$ का विरंजन कार्य :- नमी की उपस्थिति में SO_{2} गैस नवजात हाइड्रोजन उत्पन्न करता है।

$$
\begin{aligned}
& \mathrm{SO}_{2} 2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2[\mathrm{H}] \\
& \text { रंगीन फूल }+[\mathrm{H}] \rightarrow \text { रंगहीन फूल }
\end{aligned}
$$

Ans. Bleaching Nature of $\mathbf{C l}_{\mathbf{2}}$

In presence of moisture, chlorine acts as a bleaching agent. Chlorine reacts with water to form HCl and HCLO . HCLO is not stable. It decomposed to produce nascent oxygen.

$$
\begin{aligned}
\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{HCl}+\mathrm{HClO} \\
\mathrm{HClO} & \rightarrow \mathrm{HCl}+\mathrm{O}
\end{aligned}
$$

Coloured flower + Nascent oxygen \rightarrow colourless flower the bleaching action of chlorine is permanent. This is due to oxidizing nature of chlorine.

Bleaching action of CO_{2}

In presence of moisture, SO_{2} produces nascent hydrogen.

$$
\mathrm{SO}_{2} 2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2[\mathrm{H}]
$$

Coloured flower $+[\mathrm{H}] \rightarrow$ colourless flower the bleaching is temporary. This is due to reducing nature of SO_{2}.

प्र० 4.: सम्पर्क विधि से सल्फ्यूरिक अम्ल बनाने के सिद्धान्त को बतावें।

Q. Discuss the principle involved in the manufacture of sulphuric acid by entact process.
उत्तर : संपर्क विधि से $\mathrm{H}_{2} \mathrm{SO}_{4}$ का निर्माण :-
सिद्धांत :- संपर्क विधि में निम्नलिखित चरणें हैं-
(क) सल्फर या सल्फर के आयस्क को हवा में जलाकर SO_{2} गैस प्राप्त किया जाता है।

$$
\mathrm{S}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{2}(g)
$$

(ख) SO_{2} गैस ऑक्सीजन के साथ $\mathrm{V}_{2} \mathrm{O}_{5}$ की उपस्थिति में प्रतिक्रिया कर SO_{3} गैस बनाता है।

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{V}_{2} \mathrm{O}_{5}} 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

यह प्रतिक्रिया उष्माक्षेपी है तथा प्रतिक्रिया में मोल्स में कमी आयी है। अतः कम तापक्रम तथा अधिक दाब प्रतिक्रिया के लिए उपयुक्त है। लेकिन कम तापक्रम पर प्रतिक्रिया की गति कम हो जाती है। इसलिए अनुकूलतम ताप 720 K लिया जाता है। दाब 2 बॉर लिया जाता है।
(ग) उत्पन्न SO_{3} गैस को सांद्र $\mathrm{H}_{2} \mathrm{SO}_{4}$ में अवशोषित कर ओलियम तैयार किया जाता है।

$$
\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \text { (ओलियम) }
$$

(घ) ओलियम का पानी के साथ प्रतिक्रिया कर $\mathrm{H}_{2} \mathrm{SO}_{4}$ का निर्माण होता है।

$$
\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}
$$

Ans. Manufacture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ by contact process-
Principle :-Following are the steps in contact process for the manufacture of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(i) burning of sulpur or sulphur ores in air to produce SO_{2} gas.

$$
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})
$$

(ii) SO_{2} gas reacts with oxygen in presence of $\mathrm{V}_{2} \mathrm{O}_{5}$ to give SO_{3} gas

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{V}_{2} \mathrm{O}_{5}} 2 \mathrm{SO}_{3}(\mathrm{~g}) \Delta \mathrm{H}=-\mathrm{ve}
$$

This reaction is exotheomic and in reaction, there is decrease in volume. Therefore, low temperature and high pressure are favourable conditions for reaction. At low temperature, the rate of reaction is low. So, optimum temperature 720 K is choosen. The pressure is taken 2 bar.
(iii) The SO_{3} gas is absorbed in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ to produce oleum.

$$
\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \text { (oleum) }
$$

(iv) Dilution of oleum with water gives $\mathrm{H}_{2} \mathrm{SO}_{4}$.

$$
\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}
$$

प्र० 5: सउदाहरण परिभाषा दें-

(क) योगशील पॉलिमर

(ख) संघनन पॉलिमर

Q. Define with example-

(a)
Addition polymer
(b) Condensation polymer

उत्तर : योगात्मक बहुलक - वैसा बहुलक जो एकलक इकाई के योग से बनाता है, योगात्मक बहुलक कहलाता है।

$$
\mathrm{nCH}_{2}=\mathrm{CH}_{2} \longrightarrow \quad\left(\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{\mathrm{n}}
$$

सघनन बहुलक - वैसा बहुलक जो एकलक इकाई के संघनन के फलस्वरूप बनता है एवं इसके साथ छोटा अणु जैसे जल, अल्कोहल आदि निकल जाते हैं, संघनन बहुलक कहलाता है।
उदाहरण - नॉयलान $(6,6)$

Ans. Addition polymer :-The polymer which is obtained by the addition of monomer units, is called addition polymr.

$$
\left.\mathrm{nCH}_{2}=\mathrm{CH}_{2} \longrightarrow \quad+\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{\mathrm{n}}
$$

Condensation polymer :-The polymer which is formed by the condensation of monomers with the evolution of smaller molecules such as $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{OH}$ etc. is called condensation polymer. Ex. Nylon $(6,6)$

प्र० 6.: DNA तथा RNA में विभेद बतावें।

Q. Differentiate between DNA and RNA

उत्तर : न्युक्लिक अम्ल दो प्रकार का होता है-
(क) डिऑक्सी राइबो न्यूक्लिक अम्ल (DNA)
(ख) राइब्रोन्यूक्लिक अम्ल (RNA)
DNA तथा RNA में मुख्य विभेद इस प्रकार है-

DNA		RNA	
(1)	DNA में डिऑक्सी राइब्रोज शर्करा पाया जाता है।	(1)	RNA में राइब्रोज शर्करा पाया जाता है।
(2)	इसमें चार क्षार जैसे एडेनिन, गुआनीन, साइटोसीन तथा थाइमीन पाये जाते हैं।	(2)	इसमें चार क्षार जैसे एडेनिन, गुआनीन, सायटोसीन तथा यूरेसिल पाये जाते हैं।
(3)	इसकी संरचना द्विकुंडली होती है।	(4)	इसकी संरचना एकल कुंडलीय होती है।

Ans. There are two types of nucleic acid-
(a) deoxyribonucleic acid (DNA)
(b) ribonucleic acid (RNA)

The main difference between these two acids are as below

DNA		RNA	
(1)	In DNA, deoxyribose sugar is found.	(1)	In RNA, ribose sugar is found.
(2)	DNA contains four bases i.e. adenine, guanine, cytosine and thymine.	(2)	RNA contains four bases i.e. adenine, guanine, cytosine and uracil.
(3)	It has double strand helix structure.	(4)	It has single strand helix structure.

प्र० $7 .: 27^{\circ} \mathrm{C}$ पर युरिया के 5% विलयन का परासरण दाब ज्ञात करें।

$$
\mathrm{R}=0.0821 \mathrm{~L} \text { atom } \mathrm{K}^{-1} \mathrm{~mol}^{-1}
$$

Q. Calculate the osmotic pressure of 5% solution of urea at $27^{\circ} \mathrm{C}$.

$$
\mathrm{R}=0.0821 \mathrm{~L}^{\text {atomK }} \mathrm{K}^{-1} \mathrm{~mol}^{-1}
$$

उत्तर : $\pi=$ CRT

$$
=\frac{\mathrm{n}}{\mathrm{~V}} \mathrm{RT} \quad \text { यूरिया का भार }=5 \text { ग्राम }
$$

यूरिया का आण्विक भार $=60$ ग्राम
$\mathrm{n}=\frac{5}{60}=\frac{1}{12}$

$$
\mathrm{T}=27+273=300 \mathrm{~K}
$$

$\mathrm{V}=100$ मि०ली० $=\frac{100}{1000}$ ली० $=0.1$ ली०

$$
\begin{aligned}
\therefore \pi & =\frac{1 / 12}{0.1} \times 0.0821 \times 300 \\
& =\frac{10}{12} \times 0.0821 \times 300 \mathrm{~atm} \\
& =20.52 \mathrm{~atm}
\end{aligned}
$$

Ans. $\quad \pi=\mathrm{CRT}$

$$
\begin{aligned}
& =\frac{\mathrm{n}}{\mathrm{~V}} \mathrm{RT} \quad \begin{array}{l}
\text { weight of urea }=5 \mathrm{gm} \\
\text { Molar mass of urea }\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)
\end{array} \\
& \begin{aligned}
\mathrm{n}=\frac{5}{60}=\frac{1}{12} & =60
\end{aligned} \\
& \begin{aligned}
& \mathrm{V}=100 \mathrm{c} . \mathrm{c}=\frac{100}{1000} \mathrm{~L}=0.1 \mathrm{~L} \\
& \begin{aligned}
\therefore & =\frac{1 / 12}{0.1} \times 0.0821 \times 300 \\
& =\frac{10}{12} \times 0.0821 \times 300 \mathrm{~atm} \\
& =20.52 \mathrm{~atm}
\end{aligned}
\end{aligned}
\end{aligned}
$$

प्र० 8.: कोलाइड बनाने की दो विधियाँ लिखें।
Q. Give two methods for the preparation of colloids.

उत्तर : कोलाइड बनाने की विधियाँ:-
(क) रासायनिक विधि - कोलॉइड को रासायनिक प्रतिक्रियाएँ जैसे उभयविघटन, ऑक्सीकरण,
हाइड्रोलिसीस आदि से तैयार किया जाता है।

$$
\mathrm{AS}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{~S} \xrightarrow{\text { Double decomposition }} \mathrm{AS}_{2} \mathrm{~S}_{3}(\text { sol })+3 \mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{array}{rll}
\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} & \xrightarrow{\text { Oxidations }} & 3 \mathrm{~S}(\mathrm{sol})+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} & \xrightarrow{\text { Hydrolysis }} & \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{sol})+3 \mathrm{HCl}
\end{array}
$$

(ख) पेप्टीजेशन - यह अवक्षेप को कोलॉइड सॉल में परिवर्तित करने की विधि है। अवक्षेप को परिक्षेपण माध्यम में हल्की मात्रा में विधुत विच्छेद के साथ मिलाया जाता है। इससे कोलॉइड सॉल प्राप्त होता है। इसमें जो एलोक्ट्रोलाइट प्रयुक्त होता है, उसे पेप्टाइजिंग कारक कहते हैं।

Ans. Preparation of colloids

(i) Chemical method

Colloridal solutions can be prepared by chemical reactions such as double decomposition, oxidation, hydrolysis etc.

(ii) Peptization

It is the process of convesting a precipitate into colloridal sol by shaking it with dispersion medium in the presence of small amount of electrolyte. The electrolyte used for this purpose is called peptizing agent.

प्र० 9.: NO_{3}^{-}आयन की पहचान के लिए ब्राऊन रींग परीक्षण बतावें।

Q. Give the Brown ring test for identification of nitrate ion.

उत्तर : भूरा विलय परीक्षण - इस परीक्ष्शण में परखनली में लवण का जलीय घोल लिया जाता है जिसमें NO_{3}^{-}आयन हो। इसमें तुरंत का तैयार FeSO_{4} का घोल डाला जाता है तथा परखनली के सतह से सावधानी पूर्वक कुछ बूँद सांद्र $\mathrm{H}_{2} \mathrm{SO}_{4}$ डाला जाता है। घोल के बीच में एक भूरा वलय तैयार होता है जो निर्देशित करता है कि लवण में नाइट्रेट आयन उपस्थित है।

$$
\begin{gathered}
\mathrm{NO}_{3}^{-}+3 \mathrm{Fe}^{2+}+4 \mathrm{H}^{+} \rightarrow \mathrm{NO}+3 \mathrm{Fe}^{3+} 2 \mathrm{H}_{2} \mathrm{O} \\
{\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{NO} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+} \mathrm{H}_{2} \mathrm{O}} \\
\text { भूरा वलय }
\end{gathered}
$$

Ans. Brown ring test :- In this test, freshly prepared fferrous sulphat solution is added to an aqueous solution containing nitrate ion. Then, concentrated sulphuric acid is added carefully along the sides of the test tube. A brown ring at the interface between the solution and sulphuric acid layer appears which indicates the presence of nitrate ion in the solution.

$$
\begin{gathered}
\mathrm{NO}_{3}^{-}+3 \mathrm{Fe}^{2+}+4 \mathrm{H}^{+} \rightarrow \mathrm{NO}+3 \mathrm{Fe}^{3+} 2 \mathrm{H}_{2} \mathrm{O} \\
{\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{NO} \rightarrow \underset{\substack{ \\
\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+} \\
\text { Brown ring }}}{\mathrm{H}_{2} \mathrm{O}}}
\end{gathered}
$$

प्र०10.: (क) अल्कोहल का KI के साथ प्रतिक्रिया में सल्फ्यूरिक अम्ल प्रयोग नहीं किया जाता है, क्यों?
(ख) प्राथमिक एमीन का क्वथनांक तृतियक अमीन से अधिक होता है।
Q. (a) Why is sulphuric acid not used or the reaction of alcohol With KI?
(b) Why do primary amines have higher b.p. than tertiary amine ?

उत्तर : (क) $\mathrm{H}_{2} \mathrm{SO}_{4}$ मजबूत ऑक्सीकारक है। FI के साथ प्रतिक्रिया में बना हुआ HI को I_{2} में ऑक्सीकृत कर देता है। फलतः अल्कोहल HI के साथ प्रतिक्रिया नहीं कर पाता है। यही कारण है कि $\mathrm{H}_{2} \mathrm{SO}_{4}$ उपर्युक्त प्रतिक्रिया में नहीं प्रयुक्त होता है।
(ख) प्राथमिक एमीन में हाइड्रोजन परमाणु नाइट्रोजन के साथ जुड़ा है। नाइट्रोजन अधिक वैधुत ऋणात्मक है तथा इसका आकार कम है, अत: यह हाइड्रोजन बंध बना देता है।

लेकिन तृतियक एमीन में हाइड्रोजन परमाणु नहीं है। इसलिए हाइड्रोजन बंध का निर्माण नहीं होता है। हाइड्रोजन बंध बनाने के कारण ही प्राथमिक एमीन का क्वथनांक बढ़ जाता है।
Ans. (a) Swphuric acid is strong oxidizing agent HI formed during the reaction of KI with $\mathrm{H}_{2} \mathrm{SO}_{4}$ is oxidized to I_{2}. Thus, alcohol does not react with HI.
(b) In primary amine, two hydrogen atoms are attached with nitrogen. Nitrogen is more electronegative element. So, there is formation of intermolecular hydrogen bonding.

But in teotiary amin, due to absence of hydrogen, no hydrogen ond formation takes place. This is the reason that primary amin has higher b.p.

प्र०11.: एक विद्युत रासायनिक सेल में निम्न सेल प्रतिक्रिया होती है-

$$
\mathbf{Z n}(\mathbf{s})+2 \mathbf{A g}^{+}(\mathbf{a q}) \rightarrow \mathbf{Z n}^{2+}(\mathbf{a q})+2 \mathbf{A g}(\mathbf{s})
$$

(क) सेल का कैसे
(ख) ऐनोड तथा कैथोड प्रतिक्रिया क्या है ?
Q. An electrochemical cell involves the following cell reactions-

$$
\mathbf{Z n}(\mathbf{s})+2 \mathbf{A g}^{+}(\mathrm{aq}) \rightarrow \mathbf{Z n}^{2+}(\mathrm{aq})+2 \mathbf{A g}(\mathbf{s})
$$

(a) How is cell represented?
(b) What are anode and cathode reactions?

उत्तर : (क) सेल अभिव्यक्ति-

$$
\mathrm{Zn}(\mathrm{~s}) / \mathrm{Zn}^{2+}(\mathrm{aq}) \| \mathrm{Ag}^{+}(\mathrm{aq}) / \mathrm{Ag}(\mathrm{~s})
$$

(ख) ऐनोड पर प्रतिक्रिया

$$
\mathrm{Zn}(\mathrm{~s}) \longrightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e} \quad \text { (ऑक्सीकरण) }
$$

कैथोड पर प्रतिक्रिया

$$
2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{e} \rightarrow 2 \mathrm{Ag}(\mathrm{~s}) \quad \text { (अवकरण) }
$$

Ans. (a) Cell representation-

$$
\mathrm{Zn}(\mathrm{~s}) / \mathrm{Zn}^{2+}(\mathrm{aq}) \| \mathrm{Ag}^{+}(\mathrm{aq}) / \mathrm{Ag}(\mathrm{~s})
$$

(b) Anode reaction :

$$
\mathrm{Zn}(\mathrm{~s}) \longrightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e} \quad \text { Oxidation }
$$

Cathode reaction :-

$$
2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{e} \rightarrow 2 \mathrm{Ag}(\mathrm{~s}) \quad \text { Reduction }
$$

दीर्घ उत्तरीय प्रश्नः-

Long Questions :-

प्र० 1.: (क) अवाष्प्शील धुल्य को जब घोलक में डाला जाता है तो घोल का वाष्प घनत्व घट जाता है, क्यों ?
(ख) वाष्प दबाव के सापेक्ष अवनयन से धुल्य का आण्विक भार कैसे निकाला जाता है ?
Q. (a) Why is the V.P. iof solvent decreases when non-volatile solute is added to solvent?
(b) How is molecular weight of solute determined by relative lowering of vapour pressure?
उत्तर : (क) जब घोलक में अवाष्पशील घुल्य डाला जाता है जो इसके वाष्प दबाव में कमी आ जाती है। इसे द्रव के पृष्ठ क्षेत्रफल जहाँ से वाष्पीकरण होता है के आधार पर समझा जा सकता है। जब अवाष्पशील पदार्थ को डाला जाता है तो घोलक के सतह का कुछ भाग को धुल्य के कण ढक लेते हैं जो अवाष्पशील होता है। अतः घोलक का वाष्पीकरण कम सतह के क्षेत्रफल से ही होता है, फलतः घोलक का वाष्प दबाव घट जाता है।
(ख) आपेक्षित वाष्प दबाव अवनमन से धुल्य के आण्विक भार का निर्धारण
रॉलट नियम का एक कथन यह भी है कि आपेक्षिक वाष्प दाब अवनमन धुल्य के मोल प्रभाज का समानुपाती होता है।

$$
\begin{equation*}
\frac{\mathrm{P}^{\mathrm{o}}-\mathrm{P}}{\mathrm{P}^{\mathrm{o}}}=\mathrm{X}_{\text {धुल्य }} \tag{1}
\end{equation*}
$$

यदि घुल्य के मोलों की संख्या n तथा घोलक के मोलो की संख्या N, है तो

$$
\mathrm{X}_{\text {घुल्य }}=\frac{\mathrm{n}}{\mathrm{n}+\mathrm{N}}
$$

अत: समीकरण (1) को लिख सकते हैं-

$$
\begin{equation*}
\frac{\mathrm{P}^{\mathrm{o}}-\mathrm{P}}{\mathrm{P}^{\mathrm{o}}}=\frac{\mathrm{n}}{\mathrm{n}+\mathrm{N}} \tag{2}
\end{equation*}
$$

यहाँ, $\mathrm{n} \ll \mathrm{N}$, है, $\mathrm{n}+\mathrm{N} \approx \mathrm{N}$
इसलिए समीरकण (2) हो जाएगा

$$
\begin{equation*}
\frac{\mathrm{P}^{\mathrm{o}}-\mathrm{P}}{\mathrm{P}^{\mathrm{o}}}=\frac{\mathrm{n}}{\mathrm{~N}} \tag{3}
\end{equation*}
$$

यदि घुल्य (आण्विक भार $=\mathrm{m}$) का भार W ग्राम तथा घोलक (आण्विक भारत $=\mathrm{M}$) का भार W ग्राम हो तब

$$
\mathrm{n}=\frac{\mathrm{W}}{\mathrm{~m}}, \mathrm{~N}=\frac{\mathrm{W}}{\mathrm{M}}
$$

n तथा N का मान समीकरण (1) में रखने पर

$$
\begin{array}{ll}
& \frac{P^{o}-P}{P^{0}}=\frac{\frac{W}{m}}{\frac{W}{M}} \\
\text { or, } & \frac{P^{o}-P}{P^{0}}=\frac{W M}{W m} \\
\text { or, } & m=\frac{W M}{W} \cdot \frac{P^{0}}{P^{o}-P} \tag{4}
\end{array}
$$

समीकरण (4) से घुल्य का आण्विक भार सरलता से निकाला जाता है।

Ans. (a) The decrease in V.P. of the solvent is explained on the basis of surface area of liquid from which evaporation occurs. When non-volatile solute is added a part of the solvent surface is occupied by solute particles which are non-volatile. Therefore, the evaporation of the solvent takes place from lesser surface area and hence V.P. of the sovent decreases.
(b) Determination of molecular weight of solute by relative lowering of V.P.

One of the statements of Raoult's law is, "the relative lowering of vapour pressure is equal to mole fraction of solute for a solution containing non-volatile solute."

$$
\begin{equation*}
\frac{\mathrm{P}^{0}-\mathrm{P}}{\mathrm{P}^{\mathrm{o}}}=\mathrm{X}_{\text {solute }} \tag{1}
\end{equation*}
$$

If number of moles of solute is n and moles of solvent is N, then

$$
X_{\text {solute }}=\frac{n}{n+N}
$$

Therefore, equation (1) becomes

$$
\begin{equation*}
\frac{\mathrm{P}^{0}-\mathrm{P}}{\mathrm{P}^{0}}=\frac{\mathrm{n}}{\mathrm{n}+\mathrm{N}} \tag{2}
\end{equation*}
$$

Since, $n \ll N$, so $\mathrm{n}+\mathrm{N} \approx \mathrm{N}$
Hence, equation (2) becomes

$$
\begin{equation*}
\frac{P^{0}-P}{P^{0}}=\frac{n}{N} \tag{3}
\end{equation*}
$$

If W is the weight of solute (molar mass $=\mathrm{m}$) and W gm is the weight of solvent (molar mass $=M$), then

$$
\mathrm{n}=\frac{\mathrm{W}}{\mathrm{~m}}, \mathrm{~N}=\frac{\mathrm{W}}{\mathrm{M}}
$$

Putting the values of N and n in equation (3), we get

$$
\begin{array}{ll}
& \frac{\mathrm{P}^{0}-\mathrm{P}}{\mathrm{P}^{0}}=\frac{\frac{W}{m}}{\frac{W}{M}} \\
\text { or, } & \frac{\mathrm{P}^{\mathrm{o}}-\mathrm{P}}{\mathrm{P}^{\mathrm{o}}}=\frac{\mathrm{WM}}{\mathrm{Wm}} \\
\text { or, } & \mathrm{m}=\frac{\mathrm{WM}}{\mathrm{~W}} \cdot \frac{\mathrm{P}^{0}}{\mathrm{P}^{\mathrm{o}}-\mathrm{P}} \tag{4}
\end{array}
$$

From equation (4), the molecular weight of solute is easily determined.

प्र० 2.: (क) कोलरॉश नियम का व्याख्या करें।
(ख) इसकी सहायता से-
(i) दुर्बल अम्ल का अनंत आण्विक चालकता कैसे निकालें।
(ii) दुर्बल विधुत विच्छेद का डिग्री ऑफ डिसोसिएशन कैसे निकाला जाता है।
Q. (a) State and explain Kohlrausch's law.
(b) How can it help to calculate
(i) Limiting molar conductivity of weak electrolyte.
(ii) Degree of dissociation of weak electrolyte.

उत्तर : (क) कोलरॉश के नियम के अनुसार, "किसी इलेक्ट्रोलाइट की अनंत तनुता पर आण्विक चालकता आयनों की आयनिक चालकता के योग के बराबर होता है।

यदि λ_{+}° तथा λ_{-}° धन आयतन तथा ऋण आयन की आयनिक चालकता हो तब

$$
\wedge_{m}^{\circ}=v_{+} \lambda_{+}^{\circ}+v_{-} \lambda_{-}^{\circ}
$$

ज्हाँ \vee_{+}एवं \vee_{-}धन आयन तथा ऋण आयन की संख्या है।
(ख) (i) अनंत तनुता पर दुर्बल इलेक्ट्रोलाइट का आण्विक चालकता ज्ञात करना
मना कि हमें $\mathrm{CH}_{3} \mathrm{COOH}$ का \wedge_{m}° ज्ञात करना है। इसके लिए प्रबल इलेक्ट्रोलाइट जैसे $\mathrm{CH}_{3} \mathrm{COONa}, \mathrm{HCl}$ तथा HCl का \wedge_{m}° प्राप्त कर लेते हें।

$$
\begin{align*}
\wedge_{m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{COONa}\right) & =\lambda{ }^{\circ} \mathrm{CH}_{3} \mathrm{COO}^{-}+\lambda_{\mathrm{Na}^{+}}^{\circ} \tag{1}\\
\wedge_{m}^{\circ}(\mathrm{HCl}) & =\lambda \lambda^{\circ} \mathrm{H}^{+}+\lambda \mathrm{Cl}^{-} \tag{2}\\
\wedge_{m}^{\circ}(\mathrm{NaCl}) & =\lambda{ }_{\mathrm{Na}^{+}}+\lambda \mathrm{Cl}^{-} \tag{3}
\end{align*}
$$

समीकरण (1) $+(2)-(3)$, लागू करने पर

$$
\begin{aligned}
\lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{\circ}+ & \lambda_{\mathrm{Na}^{+}}^{\circ}+\lambda_{\mathrm{H}^{+}}^{\circ}+\lambda_{\mathrm{Cl}^{-}}-\lambda_{\mathrm{Na}^{+}}-\lambda_{\mathrm{Cl}^{-}} \\
& =\wedge_{m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{COONa}\right)+\wedge_{m}^{\circ}(\mathrm{HCl})-\wedge_{m}^{\circ}(\mathrm{NaCl})
\end{aligned}
$$

or, $\quad \lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{\circ}+\lambda_{\mathrm{H}^{+}}^{\circ}=\wedge_{m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{COONa}\right)+\wedge_{m}^{\circ}(\mathrm{HCl})-\wedge_{m}^{\circ}(\mathrm{NaCl})$
or, $\quad \wedge_{m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\wedge_{m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{COONa}\right)+\wedge_{m}^{\circ}(\mathrm{HCl})-\wedge_{m}^{\circ}(\mathrm{NaCl})$
(ii) दुर्बल इलेक्ट्रोलाइट का डिग्री ऑफ डिसोसिएशन का निर्धारण

अनंत तनुता पर इलेक्ट्रोलाइट के आण्विक चालकता की मदद से दुर्बल इलेक्ट्रोलाइट का डिग्री ऑफ डिसोसिएशन का मान निकाला जाता है। इसका सूत्र है-

$$
\propto=\frac{\wedge_{m}^{c}}{\wedge_{m}^{\circ}}
$$

जहाँ $\wedge_{m}^{c}=$ किसी सांद्रण पर घोल का आण्विक चालकता
$\wedge_{m}^{\circ}=$ अनंत तनुता पर घोल का आण्विक चालकता

Ans. (a) Kohlrausch's law :-

According to this law, "molar conductivity of an electrolyte at infinite dilution is expressed as sum of the contributions from its individual ions."

These contributions are called ionic conductances of cations and anion.
If λ_{+}° and λ_{-}° are ionic conductances of cation and anion, then

$$
\begin{equation*}
\wedge_{m}^{\circ}=v_{+} \lambda_{+}^{\circ}+v_{-} \lambda_{-}^{\circ} \tag{1}
\end{equation*}
$$

Where v_{+}and v_{-}epresents number of cations and numberof anions.
(b) (i) Calculation of molar conductivity of weak electrolyte

Suppose we have to determine $\wedge_{m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$. For this, limiting molar conductivities of strong electrolytes like $\mathrm{CH}_{3} \mathrm{COONa}, \mathrm{HCl}$ and HCl are determined.

$$
\begin{align*}
\wedge_{m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{COONa}\right) & =\lambda{ }^{\circ} \mathrm{CH}_{3} \mathrm{COO}^{-}+\lambda_{\mathrm{Na}^{+}}^{\circ} \tag{1}\\
\wedge_{m}^{\circ}(\mathrm{HCl}) & =\lambda{ }^{\circ} \mathrm{H}^{+}+\lambda \mathrm{Cl}^{-} \tag{2}\\
\wedge_{m}^{\circ}(\mathrm{NaCl}) & =\lambda \mathrm{Na}^{+}+\lambda \mathrm{Cl}^{-} \tag{3}
\end{align*}
$$

Applying (1) + (2) - (3), we get,

$$
\begin{aligned}
\lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{\circ}+ & \lambda_{\mathrm{Na}^{+}}^{\circ}+\lambda_{\mathrm{H}^{+}}^{\circ}+\lambda_{\mathrm{Cl}^{-}}-\lambda_{\mathrm{Na}^{+}}-\lambda_{\mathrm{Cl}^{-}} \\
& =\wedge_{m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{COONa}\right)+\wedge_{m}^{\circ}(\mathrm{HCl})-\wedge_{m}^{\circ}(\mathrm{NaCl})
\end{aligned}
$$

or, $\quad \lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{\circ}+\lambda_{\mathrm{H}^{+}}^{\circ}=\wedge_{m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{COONa}\right)+\wedge_{m}^{\circ}(\mathrm{HCl})-\wedge_{m}^{\circ}(\mathrm{NaCl})$
or, $\quad \wedge_{m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\wedge_{m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{COONa}\right)+\wedge_{m}^{\circ}(\mathrm{HCl})-\wedge_{m}^{\circ}(\mathrm{NaCl})$

(ii) Calculation of degree of dissociation of weak electrolyte

By the knowledge of limiting molar conductivity of electrolyte, degree of dissociation of weak electrolyte is calculated by the formula-

$$
\propto=\frac{\wedge_{m}^{c}}{\wedge_{m}^{\circ}}
$$

Where \wedge_{m}^{c} is the molar conductivity of solution at any concentration.
\wedge_{m}° is the limiting molar conductivity.

प्र० 3.: (क) ओस्तवाल्ड विधि से नाइट्रिक अम्ल किस प्रकार तैयार किया जाता है ?
(ख) नाइट्रिक अम्ल इनके साथ किस प्रकार प्रतिक्रिया करता है ?
(i) NaOH
(ii) Cu
(iii) \mathbf{I}_{2}
Q. (a) How is nitric acid prepared ostwald's process ?
(b) How does nitric acid react with
(i) NaOH
(ii) Cu
(iii) I_{2}

उत्तर : (क) ओस्टवाल्ड विधि से नाइट्रिक अम्ल का निर्माण
ओस्टवाल्ड विधि से नाइट्रिक अम्ल का निर्माण निम्न चरणों में की जाती है-
(i)

अमोनिया गैस को नाइट्रिक ऑक्साइड में ऑक्सीकृत किया जाता है। यह प्रतिक्रिया उष्मारोधी है।

$$
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \xrightarrow{\mathrm{Pt} / \mathrm{Rh} \text { gangue catalyst }} 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)
$$

(ii) नाइट्रिक ऑक्साइड ऑक्सीजन के साथ प्रतिक्रिया कर नाइट्रोजन डायऑक्साइड बनाता है।

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)
$$

(iii) इस तरह प्राप्त नाइट्रोजन डायऑक्साइड जल में घुलकर नाइट्रिक अम्ल देता है।

$$
3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)
$$

प्राप्त NO पुन: उपयोग में लाया जाता है।
(b) (i) $\mathbf{N a O H}$ के साथ - नाइट्रिक अम्ल NaOH के साथ प्रतिक्रिया कर सोडियम नाइट्रेट तथा पानी बनाता है।

$$
\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

(ii) Cu के साथ - जब कॉपर को तनु $\mathrm{I}+\mathrm{NO}_{3}$ से प्रतिक्रिया की जाती है तो नाइट्रिक ऑक्साइड बनता है।
$3 \mathrm{Cu}+8 \mathrm{HNO} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$
लेकिन सांद्र HNO_{3} के साथ कॉपर नाइट्रोजन डायऑक्साइड बनाता है।
$\mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(iii) I_{2} के साथ

नाइट्रिक अम्ल I_{2} के साथ प्रतिक्रिया कर आयोडिक अम्ल बनाता है।

$$
\mathrm{I}_{2}+10 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{HIO}_{3}+10 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Ans. (a) Manufacture of nitric acid by oswwald's process -
Following are in steps for the manufacture of nitric acid by ostwald's process-
Ammonia is oxidised to nitric oxide. This reaction is exothermic.

$$
\begin{equation*}
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \xrightarrow[500 \mathrm{~K}, 9 \text { bar }]{\mathrm{Pt} / \mathrm{Rh} \text { gangue catalyst }} 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) \tag{iv}
\end{equation*}
$$

(v) Nitric oxide combines with oxygen to give nitrogendioxide.

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)
$$

(vi)

Nitrogen dioxide so obtained dissolves in water to give nitric acid.

$$
3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)
$$

No thus formed is recycled.
(b) (i) With $\mathbf{N a O H}$ - Nitric acid reacts with NaOH to give sodium nitrate and water.

$$
\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

(ii) Wtih $\mathbf{C u}$ - When copper is reacted with dilute HNO_{3}, nitric oxide is formed.

$$
3 \mathrm{Cu}+8 \mathrm{HNO} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}
$$

But with concentrated HNO_{3}, copper gives nitrogen dioxide gas.

$$
\mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

(iii) Wtih $\mathbf{I}_{\mathbf{2}}$

Nitric acid reacts with I_{2} to form iodic acid.

$$
\mathrm{I}_{2}+10 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{HIO}_{3}+10 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

प्र० 4.: इन प्रतिक्रियाओं को पूरा करें-
(क)

(ख) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{SOCl}_{2} \rightarrow$
(ग) $\mathrm{CH}_{3} \mathbf{C H O} \xrightarrow{\text { dil. } \mathrm{NaOH}}$
(घ)

(ड) $\mathrm{CH}_{3} \mathrm{CONH}_{2} \xrightarrow{\mathrm{Br}_{2} / \mathrm{NaOH}}$
Q. Complete the following reactions-
(a) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HCl} \xrightarrow{\text { Peroxide }}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{SOCl}_{2} \rightarrow$
(c) $\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\text { dil. } \mathrm{NaOH}}$
(d)

(e) $\mathrm{CH}_{3} \mathrm{CONH}_{2} \xrightarrow{\mathrm{Br}_{2} / \mathrm{NaOH}}$

Ans.
(a) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HCl} \xrightarrow{\text { Peroxide }} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Cl}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{SOCl}_{2} \xrightarrow{\Delta} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{SO}_{2}(g)+\mathrm{HCl}(g)$
(c)

(d)

(e) $\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{Br}_{2}+4 \mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}+2 \mathrm{NaBr}+\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$

प्र० 5.: संक्षिप्त टिप्पणी लिखें-
(क) कोल्बे प्रतिक्रिया
(ख) कारवाइलअमीन प्रतिक्रिया
Q. Complete the following reactions-
(a) Kolbe reaction
(b) Carbylamine reaction

उत्तर : (क) कोल्बे प्रतिक्रिया - इस प्रतिक्रिया में कार्बोक्सिलिक अम्ल के सोडियम या पौटेशियम लवण के जलीय घोल को विद्युत विच्छेद किया जाता है। ऐनोड पर अल्केन बनता है।

$$
\mathrm{CH}_{3} \mathrm{COOK} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{K}^{+}
$$

एनोड पर,

$$
\mathrm{CH}_{3} \mathrm{COO}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{e}
$$

$$
\mathrm{CH}_{3} \mathrm{COO}^{\bullet} \xrightarrow{\Delta} \mathrm{CH}_{3} \cdot+\mathrm{CO}_{2}
$$

$$
\dot{\mathrm{C}} \mathrm{H}_{3}+\dot{\mathrm{C}} \mathrm{H}_{3} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{3}(\text { एचैन })
$$

कैथोड पर, $\quad 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e} \rightarrow 2 \mathrm{OH}^{-}+\mathrm{H}_{2}$
(b) कार्बाइलएमीन प्रतिक्रिया - इस प्रतिक्रिया में प्राथमिक एमीन (एलिफेटिक या एरोमेटिक) को क्लोरोफॉर्म के साथ क्षार की उपस्थिति में प्रतिक्रिया किया जाता है। इसके फलस्वरूप आइसोसायनाइड बनते हैं जिसका गंध खराब हो होता है।

इस प्रतिक्रिया से प्राथमिक एनिन का निरीक्षण किया जाता है।

$$
\begin{aligned}
\mathrm{R}-\mathrm{NH}_{2} & +\mathrm{CHCl}_{3}+3 \mathrm{KOH} \xrightarrow{\Delta} \mathrm{RNC}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O} \\
& +\mathrm{CHCl}_{3}+3 \mathrm{KOH} \xrightarrow{\Delta}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Ans. (a) Kolbe Reaction - In this reaction, an aqueous solution of sodium or potassium salt of a carbozylic acid is electrolysed, alkane is formed at anode.

$$
\begin{array}{ll}
& \mathrm{CH}_{3} \mathrm{COOK} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{K}^{+} \\
\text {At anode, } & \mathrm{CH}_{3} \mathrm{COO}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{e} \\
& \mathrm{CH}_{3} \mathrm{COO} \xrightarrow{\bullet} \xrightarrow{\Delta} \mathrm{CH}_{3} \bullet+\mathrm{CO}_{2} \\
& \dot{\mathrm{C}} \mathrm{H}_{3}+\dot{\mathrm{C}} \mathrm{H}_{3} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{3} \\
\text { At cathode, } & 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e} \rightarrow 2 \mathrm{OH}^{-}+\mathrm{H}_{2}
\end{array}
$$

(b) Carbylamine reaction - Primary amine (aliphatic or aromatic) reacts with chloroform in presence of alkali solution to form isocyanides which are foul smelling substances.

This reaction is used as a test for primary amine.

$$
\begin{aligned}
\mathrm{R}-\mathrm{NH}_{2} & +\mathrm{CHCl}_{3}+3 \mathrm{KOH} \xrightarrow{\Delta} \mathrm{RNC}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O} \\
& +\mathrm{CHCl}_{3}+3 \mathrm{KOH} \xrightarrow{\Delta} \quad+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

सही उत्तर चुने:-

Choose the correct answer :- (1 mark each)

1. किसी रवा का घतत्व है-
(क) $\frac{a^{3} \times N_{o}}{Z \times M}$
(ख) $\frac{Z \times M}{a^{3} \times N_{o}}$
(ग) $\frac{Z \times M}{a^{3}}$
(घ) $\frac{M}{a^{3} \times N_{o}}$

Density of a cryptal is
(a) $\frac{a^{3} \times N_{o}}{Z \times M}$
(b) $\frac{Z \times M}{a^{3} \times N_{o}}$
(c) $\frac{Z \times M}{a^{3}}$
(d) $\frac{M}{a^{3} \times N_{o}}$
2. निम्नलिखित किस युग्म में चतुष्फलक एवं अष्टफलक रिक्तियाँ होती है-
(क) B.C.C. और F.C.C.
(ख) H.C.P. और S.C.C.
(ग) H.C.P. और C.C.P.
(घ) B.C.C. और H.C.P.

In which of the following pairs of structures are tetrahedral and octahedral voids.
(g) B.C.C. and F.C.C.
(b) H.C.P. and S.C.C.
(h)
H.C.P. and C.C.P.
(d) B.C.C. and H.C.P.
3. $K_{b}=\Delta T_{b}$ जबकि घोल की मोललता है-
(क) 1
(ख) 2
(ग) 3
(घ) 4
$K_{b}=\Delta T_{b}$ when molality of solution is
(g) 1
(b) 2
(c) 3
(d) 4
4. प्रतिक्रिया $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ का वेग स्थिरांक 3×10^{-5} प्रति सेकेंड है। यदि प्रतिक्रिया का दर 2.4×10^{-5} मोल प्रति लीटर प्रति प्रति सेकेंड का हो तो $\mathrm{N}_{2} \mathrm{O}_{5}$ का सांद्रण मोल प्रति लीटर में है-
(क) 0.8
(ख) 1.2
(ग) 0.04
(घ) 1.4

The rate constant for the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ is $3 \times 10^{-5} \mathrm{sec}^{-1}$. If the rate of reaction is $2.4 \times 10^{-5} \mathrm{~mol} \mathrm{lit}^{-1} \mathrm{sec}^{-1}$. Then the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}\left(\right.$ in $\left.\mathrm{Mol} \mathrm{lit}^{-1}\right)$ is
(a) 0.8
(b) 1.2
(c) 0.04
(d) 1.4
5. कौन-सा वक्तव्य गलत है-
(क) $\frac{P_{0}-P_{s}}{P_{o}}=$ धुल्य का मोल प्रभाज
(ख) $\frac{\mathrm{P}_{\mathrm{o}}-\mathrm{P}_{\mathrm{s}}}{\mathrm{P}_{\mathrm{o}}}=$ घोलक का मोल प्रभाज
(ग) $\pi=C \cdot R T$
(घ) $\Delta T_{f}=\frac{K_{f}}{K_{b}} \times \Delta T_{b}$

Which statement is false
(a) $\frac{P_{o}-P_{S}}{P_{o}}=$ mole fraction of solute
(b) $\frac{P_{0}-P_{S}}{P_{o}}=$ mole fraction of solvent
(c) $\pi=C \cdot R T$
(d) $\Delta T_{f}=\frac{K_{f}}{K_{b}} \times \Delta T_{b}$
6. बेन्जोइक अम्ल का बेंजीन घोल में वेन्ट हॉफ गुणक है-
(क) 0.0
(ख) 1.0
(ग) 0.5
(घ) 0.25

Van't Hoff factor for benzoic acid in benzene solution is-
(a) 0.0
(b) 1.0
(c) 0.5
(d) 0.25
7. जलीय NaOH के विद्युत विच्छेदन में कैथोड और एनोड पर मुक्त गैसों के मोलों का अनुपात है-
(क) $1: 2$
(ख) $2: 1$
(ग) $3: 1$
(घ) $1: 3$

During the electrolysis of aqueous NaOH , the mole ratio of gases liberated at cathode and anode is
(g) $1: 2$
(b) $2: 1$
(c) $3: 1$
(d) $1: 3$
8. अम्लीय Fe (II) घोल के $40 \mathrm{ml}, 0.4 \mathrm{M}$ को $32 \mathrm{ml} \mathrm{KMnO}_{4}$ घोल पूर्णत: उदासीन करता है तो KMnO_{4} घोल का मोलरता है-
(क) 1.0 M
(ख) 2.0 M
(ग) 0.2 M
(घ) 0.1 M

40 ml of acidified solution of 0.4 M Fe (II) is completely oxidised by $32 \mathrm{ml} . \mathrm{KMnO}_{4}$ completely. The molarity of KMnO_{4} solution is
(k)
1.0 M
(b) 2.0 M
(c) 0.2 M
(d) 0.1 M
9. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{NaCl}$ और सांद्र $\mathrm{H}_{2} \mathrm{SO}_{4}$ के मिश्रण को गर्म करने पर लाल धूम प्राप्त होता है। लाल धूम का अणुसूत्र है-
(क) CrOCl_{2}
(ख) $\mathrm{CrO}_{2} \mathrm{Cl}_{4}$
(ग) $\mathrm{CrO}_{2} \mathrm{Cl}_{3}$
(घ) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$

When mixture of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{NaCl}$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is heated, red fumes is evolved. The molecular formula of red fumes is
(h)
CrOCl_{2}
(b) $\mathrm{CrO}_{2} \mathrm{Cl}_{4}$
(c) $\mathrm{CrO}_{2} \mathrm{Cl}_{3}$ (d) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
10. कोकोनट चारकोल के द्वारा कौन-सा आदर्श गैस अवशोषित नहीं होता है-
(क) He
(ख) Ne
(ग) Ar
(घ) Rn

The noble gas which is not adsorbed by coconut charcoal is-
(g) He
(b) Ne
(c) Ar
(d) Rn
11. XeF_{6} के जलांशन से प्राप्त नहीं होता है-
(क) XeOF_{6}
(ख) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(ग) XeO_{3}
(घ) XeO_{4}
XeF_{6} on hydrolysis not produce
(h)
XeOF_{6}
(b) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(c) XeO_{3}
(d) XeO_{4}
12. जलीय घोल में किसका pH महत्तम है ?
(क) NaClO
(ख) NaClO_{2}
(ग) NaClO_{3}
(घ) NaClO_{4}

Which has maximum pH in aqueous solution?
(i) NaClO
(b) NaClO_{2}
(c) NaClO_{3}
(d) NaClO_{4}
13. इनमें से कौन सबसे शक्तिशली ऑक्सीकारक है ?
(क) HClO
(ख) HClO_{2}
(ग) HClO_{3}
(घ) HClO_{4}

Which is strongest oxidising agent amount ?
(g) HClO
(b) HClO_{2}
(c) HClO_{3}
(d) HClO_{4}
14. इनमें से किस यौगिक में $\mathrm{d} \pi-\mathrm{p} \pi$ बंध है-
(क) CO_{2}
(ख) SiO_{2}
(ग) XeF_{2}
(घ) SO_{4}^{2-}

In which compound $\mathrm{d} \pi-\mathrm{p} \pi$ bond exists.
(g) CO_{2}
(b) SiO_{2}
(c) XeF_{2}
(d) SO_{4}^{2-}
15. सबसे शक्तिशाली अवकारक है-
(क) F^{-}
(ख) Cl^{-}
(ग) Br^{-}
(घ) I^{-}

The strongest reducing agent is
(g)
F^{-}
(b) Cl^{-}
(c) Br^{-}
(d) I^{-}
16. कौन सा गैस जल के सम्पर्क में भारटेक्स वलय बनाता है ?
(क) PH_{3}
(ख) $\mathrm{P}_{2} \mathrm{H}_{4}$
(ग) NH_{3}
(घ) NO_{2}

Which gas forms vortex rings in contact of air?
(g)
PH_{3}
(b) $\mathrm{P}_{2} \mathrm{H}_{4}$
(c) NH_{3}
(d) NO_{2}
17. प्रोपाइन सोडियम से तरल अमोनिया की उपस्थिति में प्रतिक्रिया कर यौगिक [A] बनाता है। यौगिक $[\mathrm{A}]$ यौगिक $[\mathrm{B}]$ से प्रतिक्रिया कर 2 -ब्यूटाइन बनाता है। यौगिक $[\mathrm{B}]$ है-
(क) $\mathrm{CH}_{3}-\mathrm{OH}$
(ख) $\mathrm{CH}_{3}-\mathrm{Br}$
(ग) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{Br}$
(घ) $\mathrm{CH}_{3}-\mathrm{CHO}$

Propyne reacts with sodium in presence of liquid amonia form a compound [A]. Compound [A] reacts with a compound [B] forms 2-butyne. The compound [B] is
(g) $\mathrm{CH}_{3}-\mathrm{OH}$
(b) $\mathrm{CH}_{3}-\mathrm{Br}$
(c) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{Br}$
(d) $\mathrm{CH}_{3}-\mathrm{CHO}$
18.

यौगिक [C] है-
(क)

(ख) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
(ग)

(घ) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$
$\mathrm{CH}_{3}-\mathrm{X} \xrightarrow{\mathrm{Mg} / \text { ether }}[\mathrm{A}] \xrightarrow{\mathrm{CH}_{3}-\mathrm{CHO}}[\mathrm{B}] \xrightarrow{\mathrm{H}_{2} \mathrm{O}}[\mathrm{C}]$
The compound [C] is-
(g)

(c) $\mathrm{CH}_{3}-\stackrel{\|}{\mathrm{C}}-\mathrm{CH}_{3}$
(d) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$
19. इनमें से कौन अम्ल ग्रिगनार्डअभिकारकों से नहीं बनाया जा सकता है-
(क) फॉर्मिक अम्ल
(ख) एसिटिक अम्ल
(ग) आइसो ब्यूटारिक अम्ल
(घ) बेन्जोइक अम्ल

Which of the following acids can not be prepared from Grignard reagents ?
(h)
Formic acid
(b) Acetic acid
(c) Iso butyric acid
(d) Benzoic acid
20. आर्सेनिक औषधियों का मुख्यतः किसके उपचार में उपयोग किया जाता है-
(क) पिलिया
(ख) तपेदिक
(ग) गनोरिया
(घ) हैजा

Arsenic drugs are mainly used in the treatment of
(g)
Jaundice
(b) Typhoid
(c) Syphills
(d) Cholera
21. निम्नलिखित में से कौन फेहलिंग घोल के साथ लाल अवक्षेप देता है-
(क) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$
(ख)

(ग)

(घ) $\mathrm{CH}_{3}-\mathrm{CHO}$

Which of the following gives red ppt. with Fehling's solution-
(g)
$\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$
(b) $\mathrm{CH}_{3}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{3}$
(c)

(d) $\mathrm{CH}_{3}-\mathrm{CHO}$
22. Which arrangement is correct regarding increasing order of stability.
(g)

(h)

(i)

(j)

23. निम्न में से कौन एमफोटेरिक है-
(क) NH_{3}
(ख) $\mathrm{CH}_{3} \mathrm{COOH}$
(ग) $\mathrm{Al}(\mathrm{OH})_{3}$
(घ) CuO

Which is amphoteric amongst
(g) NH_{3}
(b) $\mathrm{CH}_{3} \mathrm{COOH}$
(c) $\mathrm{Al}(\mathrm{OH})_{3}$
(d) CuO
24. इनमें से किसका बंधन-कोण अधिक है ?
(क) HOCl
(ख) HOBr
(ग) HOI
(घ) $\mathrm{H}_{2} \mathrm{O}$

Which has greater bond angle amongst ?
(k)
HOCl
(b) HOBr
(c) HOI
(d) $\mathrm{H}_{2} \mathrm{O}$
25.
$\mathrm{CH}_{3}-\mathrm{Cl} \xrightarrow{\mathrm{KCN}}[\mathrm{A}] \xrightarrow{\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}}[\mathrm{B}]$
यौगिक $[\mathrm{B}]$ है-
(क) $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{OH}$
(ख) $\mathrm{CH}_{3} \mathrm{COOH}$
(ग) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(घ) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
$\mathrm{CH}_{3}-\mathrm{Cl} \xrightarrow{\mathrm{KCN}}[\mathrm{A}] \xrightarrow{\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}}[\mathrm{B}]$

The compound [B] is-
(m)
$\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{OH}$
(b) $\mathrm{CH}_{3} \mathrm{COOH}$
(c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(d) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
26. कौन कार्बोनेट नहीं बनता है-
(क) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(ख) CaCO_{3}
(ग) FeCO_{3}
(घ) CuCO_{3}

Which carbonate does not exists
(t) $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}$
(b) CaCO_{3}
(c) FeCO_{3}
(d) CuCO_{3}
27. फॉर्मल्डिहाइड और फिनॉल को गर्म करने पर प्राप्त होता है-
(क) बेकेलाइट
(ख) रेजिन
(ग) पॉलिस्ट्रीन
(घ) एलडॉल

Formaldehyde is heated with phenol forms
(r)
Bakelite
(b) Resion
(c) Polystrene
(d) Aldol
28.

यौगिक [X] है-
(क)

(ख)

(ग) HOO
(घ)

$\xrightarrow[\text { (ii) } \mathrm{H}_{2} \mathrm{O} / \mathrm{Zn}]{\text { (i) } \mathrm{O}_{3}}[\mathrm{X}]$

The compound [X] is-
(a)

(b)

(c)

(d)

SOLUTION

(1)	(b)	(2) (c)	(3)	(a)	(4)	(a)	(5)	(c)
(6)	(c)	(7) (b)	(8)	(d)	(9)	(d)	(10)	(a)
(11)	(d)	(12) (a)	(13)	(a)	(14)	(d)	(15)	(d)
(16)	(b)	(17) (b)	(18)	(a)	(19)	(a)	(20)	(c)
(21)	(d)	(22) (a)	(23)	(c)	(24)	(c)	(25)	(b)
(26)	(c)	(27) (a)	(28)	(b)				

प्र० 1: CO_{2} गैस है जबकि सिलिका ठोस है। व्याख्या करें।

Q. $\quad \mathrm{CO}_{2}$ is gas while silica is solid. Explain

उत्तर : Si और O के बीच विद्युत ॠणात्मकता अन्तर अधिक रहने के कारण, $\mathrm{Si}-\mathrm{O}$ बन्धन में कुछ आयॉनिक चरित्र उत्पन्न हो जाता है। अतः सिलिका त्रिबिम्बीच चतुष्फल का अनन्त गुणक संरचना बनाता है।

जिसके कारण इसका द्रवणांक उच्च होता है एवं सिलिका एक ठोस अणु है।
जबकि CO_{2} एक सामान्य सहसंयोगी अणु है जिसमें कार्बन परमाणु sp -प्रसंकृत होता है। CO_{2} अणु कमजोर वेण्डरवाल बल से एक-दूसरे से जुटा होता है। अतः CO_{2} एक गैस हे।

Ans. Due to large electronegativity difference in Si and O atoms, $\mathrm{Si}-\mathrm{O}$ bond possesses some ionic nature and thus silica has three dimensional infinite structure having silicon atom tetraheadrally bonded to four oxygen atoms. The entire crystal of silica shows giant molecule and having high melting solid.

On the other hand CO_{2} shows simple covalent nature having C -atom sphybridised. The molecules of CO_{2} are held together by weak vander Waals forces and it exists as gas.

प्र० 2: ग्रेफाइट विधुत का सुचालक है परन्तु हीरा विधुत का कुचालक होता है क्यों ?
Q. Graphite is good conductor of electricity but diamond is bad conductor of electricity. Why?
उत्तर : ग्रेफाइट का C -atom sp^{2}-प्रसंकृत होता है तथा free p -electron π-bond का निर्माण कर एक समतलीय संरचना बनाता है। कमजोर π-bond टूटकर पूरे संरचना में मुक्त electron का संचार करता है। इसलिए ग्रेफाइट विधुत का सुचालक है।

जबकि हीरा का कार्बन परमाणु sp^{3}-प्रसंकृत होता है इसका सभी संयोगी इलेक्ट्रोन बंधन निर्माण में लग जाता है। तथा इसमें मुक्त इलेक्ट्रोन नहीं रहता है। इसलिए हीरा विधुत का कुचालक होता है।

Ans. Graphite has sp^{2}-hybridised carbons with layer structure along with π-electrons ($\mathrm{p}-\mathrm{p}$ bond) free to move throughout entires layers. Hence graphite is good conductor of electricity.

While diamond's carbon atom is sp^{3}-hybridised and there is no mobile electron in it. Hence diamond is bad conductor of electricity.

प्र० 3: एल्युर्fिमियम के बर्तन में सांद्र HNO_{3} को रखा जा सकता है क्यों ?

Q. Aluminium container can be used for storing conc. $\mathbf{H N O}_{3}$. Why?

उत्तर : सांद्र HNO_{3} के संपर्क में Al निष्क्रिय हो जाता है क्योंकि इसके सतह पर एल्युमिनियम ऑक्साइड का एक परत जमा हो जाता है। अतः Al बर्तन में सांद्र को HNO_{3} रखा जा सकता है।

Ans. Al becomes passive in contact of conc. HNO_{3} due to forming of thin layer of Aluminium oxide. Hence conc. HNO_{3} can be stored in Al-container.

प्र० 4: FeS से $\mathrm{H}_{2} \mathrm{~S}$ बनाने के लिए नाइट्रिक अम्ल का व्यवहार नहीं किया जा सकता है, क्यों ?
Q. Nitric acid can not be used to prepare $\mathrm{H}_{2} \mathrm{~S}$ from FeS. Why ?

उत्तर : नाइट्रिक अम्ल एक ऑक्सीकारक है जो $\mathrm{H}_{2} \mathrm{~S}$ को सल्फर में ऑक्सीकृत कर देता है।

$$
\begin{gathered}
\mathrm{FeS}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{~S} \\
3 \mathrm{H}_{2} \mathrm{~S}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{NO}+\mathrm{S}+4 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Ans. Nitric acid is an oxidising agent, it will oxidise $\mathrm{H}_{2} \mathrm{~S}$ to sulphur.

$$
\begin{gathered}
\mathrm{FeS}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{~S} \\
3 \mathrm{H}_{2} \mathrm{~S}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{NO}+\mathrm{S}+4 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

प्र० 5: आयोडीन जल में अघुलनशील है परंतु KI के घोल में घुलनशील होता है। व्याख्या करें।

Q. Iodine is insoluble in water but soluble in KI solution. Explain.

उत्तर : I_{2} एक अध्रुवीय सह संयोजक यौगिक है जो ध्रुवीय घोलक जल में अघुलनशील होता है। KI के जलीय घोल में I_{2} एक जटिल आययनिक यौगिक KI_{3} का निर्माण करता है जो जल में घुलनशील है।

$$
\mathrm{KI}+\mathrm{I}_{2} \rightarrow \mathrm{KI}_{3}
$$

Ans. I_{2} is a non-polar covalent compound and thus insoluble in water. In aqueous solution of $\mathrm{KI}, \mathrm{I}_{2}$ forms a complex compound KI_{3}. Which is ionic in nature and soluble in water.

$$
\mathrm{KI}+\mathrm{I}_{2} \rightarrow \mathrm{KI}_{3} \text { (water soluble complex) }
$$

प्र० 6: निम्नलिखित में उपयुक्त जाँच द्वारा अंतर स्पष्ट करें।

(क) फिनॉल और बेंजोइक अम्ल
(ख) इथाइल एल्कोहल एवं एसीटोन
Q. Differentiate the following by proper tests.
(a)

Phenol and benzoic acid.
(b)

Ethyl alcohol and acetone.
उत्तर : (क) फिनॉल सोडियम कार्बोनेट के साथ प्रतिक्रिया नहीं करता है जबकि बेंजोइक अम्ल सोडियम कार्बोनेट के साथ प्रतिक्रिया कर CO_{2} गैस उत्पन्न करता है।
(ख) इथेनॉल और एसीटोन दोनों आयोडोफार्म जाँच दिखलाता है। जबकि सिर्फ इथेनॉल विक्टरमेयर जाँच में खून के जैसा लाल रंग उत्पन्न करता है।

Ans. (a) Phenol does not give effervescence of CO_{2} gas with sodium carbonate. While bezoic acid produces effervescence of CO_{2} gas with sodium carbonate.
(b) Ethanol and acetone both performs iodoform test. While only ethanol gives red colouration with victor-Macyer's test.

प्र० 7: निम्नलिखित प्रतिक्रिया को पूर्ण करें।
Q. Complete the following reactions.
(a)

(b)

Ans.
(a)

(b)
 3 HBr

प्र० 8: निम्नलिखित को परासरणदाब के क्रम में पहचानें।
Q. Predict the osmotic pressure order for the following.
(I) 0.1 N Urea
(II) 0.1 N NaCl
(III) $0.1 \mathrm{~N} \mathrm{Na}_{3} \mathrm{PO}_{4}$
(IV) $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{SO}_{4}$

Ans. $\quad \mathrm{I}<\mathrm{II}<\mathrm{IV}<\mathrm{III}$
प्र० 9: धातु $\mathbf{A}, \mathrm{B}, \mathrm{C}$ और D का मानक ऑक्सीकरण विभव क्रमशः $-0.34,+0.25,+0.76$ और -0.85 वोल्ट है। इन्हें क्रियाशीलता के घटते क्रम में सजायें।
Q. The standard oxidation potential of four metals A, B, C and D are $-0.34,+0.25$, +0.76 and $-\mathbf{0 . 8 5}$ volt respectively. Arrange them in decreasing order of reactivity.
Ans. $\quad \mathrm{C}>\mathrm{B}>\mathrm{A}>\mathrm{D}$
प्र०10: निम्न की व्याख्या करें।
(क) क्यों किसी उत्प्रेरक का अति महीन चूर्ण अधिक सक्रिय होता है ?
(ख) जब गर्म ऑक्सलिक अम्ल में अम्लीय KMnO_{4} का घोल डाला जाता है तो प्रारंभ में KMnO_{4} का रंग धीरे-धीरे रंगहीन होता है परंतु कुछ समय के बाद तीव्र हो जाता है।
Q. Explain the following.
(a) Why the catalyst is more effective in finelly divided state?
(b) When acidic solution of KMnO_{4} is added to hot solution of oxalic acid. The colouf is decolourised slowly in beginning but after sometime it disappears rapidly.
उत्तर : (क) उत्प्रेरक के अति महीन चूर्ण का सतहीय क्षेत्रफल अधिक होता है जिसके कारण अधिशोषण का दर बढ़ जाता है। इसलिए उत्प्रेरक का महीन चूर्ण अधिक सक्रिय होता है।
(ख) आम्लीय KMnO_{4} एक ऑक्सीकारक है। इसाकी क्रियाशीलता स्वयं उत्प्रेरक Mn^{2+} ion की उपस्थिति में बढ़ जाता है।

प्रारंभ में Mn^{2+} ion नहीं बनता है इसलिए KMnO_{4} के रंगहीन होने का दर निम्न होता है। जैसे ही प्रतिक्रिया में Mn^{2+} ion का निर्माण होता है, रंगहीन होने का दर बढ़ जाता है।

Ans. (a) Surface area of finelly divided catalyst is high that increases the rate of adsorption of gas. Hence finelly divided catalyst is more effective
(b) Acidic KMnO_{4} is an oxidising agent. It activity increases in presence of self catalyst Mn^{2+} ion.

Initially decolourisation of KMnO_{4} by hot oxalic acid is slow due to less amount of Mn^{2+} ion. As soon as as Mn^{2+} ion is formed, the rate of decolourisation increases.
प्र० 11:क्यों सभी अधिशोषण उष्माक्षेपी होता है ?
Q. Why are all adsorptions exthermic.

उत्तर : अधिशोषण प्रक्रिया में सतहीय ऊर्जा में कमी होती है जो ऊष्मा के रूप में बाहर निकलती है। इसलिए सभी अधिशोषण उष्माक्षेपी होता है।

Ans. In the process of adsorption, there is decrease in surface energy which appears as heat evolution.; hence all adsorption are exothermic.

दीर्घ उत्तरीय प्रश्न:-

Long Questions :-

प्र० 1: अमोनिया गैस निम्नलिखित से क्से प्रतिक्रिया करता है।
(क) CuSO_{4} घोल
(ख) AgNO_{3} घोल
(ग) $\mathbf{H g C l}_{\mathbf{2}}$ घोल
(घ) CO_{2} गैस
(ड़) Cl_{2} गैस
Q. How ammonia gas reacts with the following.
(a) CuSO_{4} solution
(b) $\mathbf{A g N O}_{3}$ solution
(d) CO_{2} gas
(e) Cl_{2} gas

उत्तर : (क) CuSO_{4} के घोल में अमोनिया गैस प्रवाहित करने पर क्यूप्रिक हाइड्रोक्साइड का नीला अवक्षेप प्राप्त होता है जो अमोनिया की अधिकता में गहरा नीला रंग उत्पन्न करता है।

$$
\begin{gathered}
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{OH} \\
\mathrm{CuSO}_{4}+2 \mathrm{NH}_{4} \mathrm{OH} \rightarrow \underset{\text { blue ppt. }}{\mathrm{Cu}(\mathrm{OH})_{2}}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \\
\mathrm{Cu}(\mathrm{OH})_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2\left(\mathrm{NH}_{4} \mathrm{OH}\right) \rightarrow \underset{\text { Deep blue colour }}{\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}+4 \mathrm{H}_{2} \mathrm{O}}
\end{gathered}
$$

(ख) AgNO_{3} के अम्लीय घोल में अमोनिया गैस प्रवाहित करने पर सिल्वर हाइड्रोक्साइड का उजला अवक्षेप प्राप्त होता है जो NH_{3} गैस की अधिकता में घुल जाता है।

$$
\begin{gathered}
\mathrm{AgNO}_{3}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \underset{\text { White ppt. }}{\mathrm{AgOH}}+\mathrm{NH}_{4} \mathrm{NO}_{3} \\
\mathrm{AgOH}+\mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \underset{\text { soluble in water }}{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{NO}_{3}}+2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

(ग) मरक्यूरिक क्लोराइड के घोल में अमोनिया गैस प्रवाहित करनेपर मरक्यूरिक एमिनो क्लोराइड का उजला अवक्षेप प्राप्त होता है।

$$
\mathrm{HgCl}_{2}+2 \mathrm{NH}_{4} \mathrm{OH} \rightarrow \underset{\text { white ppt. }}{\left[\mathrm{Hg}\left(\mathrm{NH}_{2}\right) \mathrm{Cl}\right]}+\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}
$$

(घ) अमोनिया गैस और CO_{2} गैस के मिश्रण को उच्च दाब पर गर्म करने पर यूरिया प्राप्त होता है।

$$
2 \mathrm{NH}_{3}+\mathrm{CO}_{2} \rightarrow \stackrel{\stackrel{\mathrm{O}}{\mathrm{H}_{2} \mathrm{~N}}-\stackrel{\text { urea }}{\mathrm{C}}-\mathrm{NH}_{2}+2 \mathrm{H}_{2} \mathrm{O}}{\substack{\text { und } \\ \hline}}
$$

(ड़) (i) क्लोरीन गेस, अमोनिया गैस की अधिकता में प्रतिक्रिया कर N_{2} गैस उत्पन्न करता है।

$$
\begin{aligned}
& 2 \mathrm{NH}_{3}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{~N}_{2}+6 \mathrm{HCl} \\
& \left.\mathrm{NH}_{3}+6 \mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}\right] \times 6 \\
& \hline 8 \mathrm{NH}_{3}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{~N}_{2}+6 \mathrm{NH}_{4} \mathrm{Cl}
\end{aligned}
$$

(ii) क्लोरीन गैस की अधिकता में अमोनिया गैस प्रतिक्रिया कर नाइट्रोजन ट्राइक्लोराइड बनाता है।

$$
\mathrm{NH}_{3}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{NCl}_{3}+3 \mathrm{HCl}
$$

Ans. (a) When ammonia gas is passed through CuSO_{4} solution, blue precipitative of cupric hydroxide is obtained. Which dissolved in excesss of ammonia gas and produces deep blue coloration.

$$
\begin{gathered}
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{OH} \\
\mathrm{CuSO}_{4}+2 \mathrm{NH}_{4} \mathrm{OH} \rightarrow \underset{\text { blue ppt. }}{\mathrm{Cu}(\mathrm{OH})_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}} \\
\mathrm{Cu}(\mathrm{OH})_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2\left(\mathrm{NH}_{4} \mathrm{OH}\right) \rightarrow \underset{\text { Deep blue colour }}{\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}+4 \mathrm{H}_{2} \mathrm{O}}
\end{gathered}
$$

(b) NH_{3} gas is passed through aqueous solution of AgNO_{3}, white ppt is obtained. Which dissolved in excess of ammonia gas

$$
\begin{gathered}
\mathrm{AgNO}_{3}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \underset{\text { White ppt. }}{\mathrm{AgOH}}+\mathrm{NH}_{4} \mathrm{NO}_{3} \\
\mathrm{AgOH}+\mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \underset{\text { soluble in water }}{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{NO}_{3}}+2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

(c) When ammonia gas is passed through the solution of HgCl_{2}, white precipitate of mercuric amino chloride is obtained.

$$
\mathrm{HgCl}_{2}+2 \mathrm{NH}_{4} \mathrm{OH} \rightarrow \underset{\text { white ppt. }}{\left[\mathrm{Hg}\left(\mathrm{NH}_{2}\right) \mathrm{Cl}\right]}+\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}
$$

(d) Ammonia gas is heated with CO_{2} at high pressure, urea is obtained.

$$
2 \mathrm{NH}_{3}+\mathrm{CO}_{2} \rightarrow \underset{\text { urea }}{\mathrm{H}_{2} \mathrm{~N}-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{NH}_{2}+2 \mathrm{H}_{2} \mathrm{O}}
$$

(k) (i) Chlorine gas reacts with excess fo amonia gas forms N_{2} gas.

$$
\begin{aligned}
& 2 \mathrm{NH}_{3}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{~N}_{2}+6 \mathrm{HCl} \\
& \left.\mathrm{NH}_{3}+6 \mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}\right] \times 6 \\
& \hline 8 \mathrm{NH}_{3}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{~N}_{2}+6 \mathrm{NH}_{4} \mathrm{Cl}
\end{aligned}
$$

(ii) Excess of chlorine gas reacts with amonia gas forms nitrogen trichloride.

$$
\mathrm{NH}_{3}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{NCl}_{3}+3 \mathrm{HCl}
$$

प्र० 2: पारा के मुख्य अयस्कों का नाम लिखें। पारा को इसके अयस्क से निष्कर्षण की अभिक्रिया को लिखें।
Q. Name the important ores of mercury. How mercury is extracted from its ore ? give reactions.
उत्तर : पारा का सिनेबार अयस्क से निष्कर्षण -
सिनेबार अयस्क से पारा का निष्कर्षण निम्न चरणों में किया जाता है।
(1) सांद्रण - सिनेबार अयस्क के महीन चूर्ण का सांद्रण फेन उत्प्लावन विधि से किया जाता है।
(2) जारण - सांद्रित अयस्क और चारकोल के मिश्रण का जारण शाफ्ट भट्टी में किया जाता है। पारा के वाष्प को लोहे के पाइप से प्रवाहित कर तथा जल द्वारा टंढ़ा कर संघनित किया जाता है।

$$
\begin{gathered}
2 \mathrm{HgS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{HgO}+2 \mathrm{SO}_{2} \\
2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2} \\
\mathrm{HgO}+\mathrm{C} \rightarrow \mathrm{Hg}+\mathrm{CO} \\
\mathrm{HgO}+\mathrm{CO} \rightarrow \mathrm{Hg}+\mathrm{CO}_{2}
\end{gathered}
$$

Ans. Important ores of mercury.

Cinabar: HgS

Extraction of Mercury from Cinabar ore : The exraction of mercury from cinabar ore involves the following steps.
(iii) Concentration - The crushed ore is concentrated by froth floatation method.
(iv) Roasting - The concentrated ore is mixed with charcoal and roasted in a shaft furnance. The vapour of mercury is passed through iron pipes into water cooled condensor.

$$
\begin{gathered}
2 \mathrm{HgS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{HgO}+2 \mathrm{SO}_{2} \\
2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2} \\
\mathrm{HgO}+\mathrm{C} \rightarrow \mathrm{Hg}+\mathrm{CO} \\
\mathrm{HgO}+\mathrm{CO} \rightarrow \mathrm{Hg}+\mathrm{CO}_{2}
\end{gathered}
$$

प्र० 3: निम्नलिखित परिवर्तन आप कैसे करेंगे।

(क) ईथेनॉल से एसिटोन
(ख) बेंजीन से एनिलीन
(ग) एसिटोन से एसिल्डिहाइड
(घ) एसिटामाइड से मिथेन
(ड़) नाइट्रो बेंजीन से फिनॉल
Q. Bring the following conversions.
(a) Ethanol to acetone
(b) Benzene to aniline
(c) Acetone to acetaldehyde
(d) Acetamide to methane
(e) Nitrobenzene to phenol

Ans.
(i)
(ii)

$$
\underset{\substack{\mathrm{H}_{3}-\mathrm{Cl}-\mathrm{CH}_{3} \\ \text { Aretone }} \stackrel{\mathrm{KMnO}_{4} / \mathrm{H}^{+}}{\Delta} \underset{\text { Acetic acid }}{\mathrm{CH}_{3} \mathrm{CoOH}} .}{ }
$$

(IV)

$$
\mathrm{CH}_{3}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{NH}_{2} \xrightarrow{\mathrm{NaNO}_{2} \mid \mathrm{HCl}}
$$

Acetamide
Acetic auid
I Maot
$\mathrm{CH}_{4}<\frac{\text { Sodalime }}{\Delta} \mathrm{CH}_{3}$ coona methane sod.acetahe
(V)

प्र० 4: इकाई सेल को परिभाषित करें तथा
(क) S.S.C.
(ख) B.C.C.
(ग) F.C.C. में परमाणुओं की संख्या निकालें।
Q. Define unit cell and calculate number of atoms present in
(a) Simple subic crystal (S.S.C.)
(b) B.C.C.
(c) F.C.C.

उत्तर : किसी रवा के सबसे छोटा इकाई जिसके पुनरावृति तीनों दिशाओं में करने पर एक पूर्ण रवा का निर्माण होता है उसे इकाई सेल कहते हैं।
S.C.C. में परमाणुओं की संख्या $=8 \times \frac{1}{8}=1$
B.C.C. में परमाणुओं की संख्या $=8 \times \frac{1}{8}+1=2$
F.C. C. में परमाणुओं की संख्या $=8 \times \frac{1}{8}+6 \times \frac{1}{2}=4$

Ans. Unit cell - The smallest unit of a crystal lattice, when repeated forms the whole crystal is called unit cell.

Unit cell join together along the three directions to make up an entire crystal lattice.

No. of atoms in S.C.C. $=8 \times \frac{1}{8}=1$
No. of atoms in B.C.C. $=8 \times \frac{1}{8}+1=2$
No. of atoms in F.C. C. $=8 \times \frac{1}{8}+6 \times \frac{1}{2}=4$

$S \cdot C \cdot C$

$B \cdot C \cdot C$

$F \cdot C \cdot C$

CHEMISRY (Set-8)

सही उत्तर चुने:-

Choose the correct answer :- (1 mark each)

1. इनमें से किसका बन्धन ऊर्जा अधिक है ?
(क) F_{2}
(ख) Cl_{2}
(ग) Br_{2}
(घ) I_{2}

Which has greater bond energy amongs ?
(a) F_{2}
(b) Cl_{2}
(c) Br_{2}
(d) I_{2}
2. नाइट्रोजन $\left(\mathrm{N}_{2}\right)$ बनाने के लिए किस प्रतिक्रिया/प्रतिक्रियाओं का उपयोग किया जाता है ?
(क) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaNO}_{2} \xrightarrow{\text { heat }}$
(ख) $\mathrm{Ca}(\mathrm{OCl}) \mathrm{Cl}+\mathrm{NH}_{3} \xrightarrow{\text { heat }}$
(ग) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\text { heat }}$
(घ) इनमें सभी

Which of the following reactions is used in the preparation of $\left(\mathrm{N}_{2}\right)$?
(i) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaNO}_{2} \xrightarrow{\text { heat }}$
(b) $\mathrm{Ca}(\mathrm{OCl}) \mathrm{Cl}+\mathrm{NH}_{3} \xrightarrow{\text { heat }}$
(c) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\text { heat }}$
(d) All of these
3. नाइट्रोजन के हेलाइड का लिविस वेस प्रवृति घटते क्रम में है-
(क) $\mathrm{NF}_{3}>\mathrm{NCl}_{3}>\mathrm{NBr}_{3}>\mathrm{NI}_{3}$
(ख) $\mathrm{NI}_{3}>\mathrm{NBr}_{3}>\mathrm{NCl}_{3}>\mathrm{NF}_{3}$
(ग) $\mathrm{NCl}_{3}>\mathrm{NBr}_{3}>\mathrm{NI}_{3}>\mathrm{NF}_{3}$
(घ) $\mathrm{NI}_{3}>\mathrm{NF}_{3}>\mathrm{NCl}_{3}>\mathrm{NBr}_{3}$

The tendency of nitrogen halides to act as Lewis bases decreases in the order.
(h) $\mathrm{NF}_{3}>\mathrm{NCl}_{3}>\mathrm{NBr}_{3}>\mathrm{NI}_{3}$
(b) $\mathrm{NI}_{3}>\mathrm{NBr}_{3}>\mathrm{NCl}_{3}>\mathrm{NF}_{3}$
(c) $\mathrm{NCl}_{3}>\mathrm{NBr}_{3}>\mathrm{NI}_{3}>\mathrm{NF}_{3}$
(d) $\mathrm{NI}_{3}>\mathrm{NF}_{3}>\mathrm{NCl}_{3}>\mathrm{NBr}_{3}$
4. निम्नलिखित में कौन अभिकारक लेडएसिटेट पेपरे को काला करता है ?
(a) SO_{2}
(b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(c) $\mathrm{H}_{2} \mathrm{~S}$
(d) CO_{2}

Which of the following reagent turns lead acetate paper black ?
(a) SO_{2}
(b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(c) $\mathrm{H}_{2} \mathrm{~S}$
(d) CO_{2}
5. निम्नलिखित में किसका इल्क्ट्रोन बन्धुता महत्तम है ?
(क) F
(ख) Cl
(ग) Br
(घ) I

Which of the following has maximum electron affinity?
(a) F
(b) Cl
(c) Br
(d) I
6. निम्नलिखित में किस आदर्श गैसों का मिश्रण लेजर बीम के उत्पादन में ग्युक्त होता है-
(क) He, Ne
(ख) Ar, Rn
(ग) Kr, Ar
(घ) He, Kr

Which of the following mixture of noble gases are used in producing laser beams?
(a) He, Ne
(b) Ar, Rn
(c) Kr, Ar
(d) He, Kr
7. सल्फाइड अयस्क का सान्द्रण मुख्यत: किया जाता है। द्वारा -
(क) गुुत्व पृथकिकरण विधि
(ख) चुम्बकीय पृथकिकरण विधि
(ग) फेन उत्प्लावण विधि
(घ) इनमे से सभी

Sulphide ores are generally concentrated by the
(h) mithod
Gravity reperation method
(b) Magnetec separation mithod
(c) Froth floatation method
(d) All of these
8. सायानाइड विधि का उपयोग निष्कर्षण में किया जाता है।
(क) Cu
(ख) Ag
(ग) Zn
(घ) Al

Cyanide process is used for extraction of-
(1)
Cu
(b) Ag
(c) Zn
(d) Al
9. किस घोल से कॉपर, धातू को विस्थापित करता है ?
(क) AgNO_{3}
(ख) $\mathrm{Zn} \mathrm{SO}_{4}$
(ग) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(घ) $\mathrm{Fe} \mathrm{SO}_{4}$

From which solution copper displace the metal ?
(a)
AgNO_{3}
(b) $\mathrm{Zn} \mathrm{SO}_{4}$
(c) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(d) FeSO_{4}
10. $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ का IUPAC नाम है।
(क) पोटेशियम फेरो सायानाइड
(ख) पोटेशियम हैक्सा सायनो Fe (II)
(ग) पोटेशियम हैक्सा सायनो फेरेट (III)
(घ) पोटेशियम हैक्सा सायनो फेरेट (II)

The IUPAC name of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is -
(h)
Potassium ferro cyanide Fe (II)
(b) Potassium hexa cyano
(c) Potassium hexa cyano ferrate (III)
(d) Potassium hexa cyano ferrate (II)
11. C_{60} अणु को है-
(क) 14 पेन्टागोन और 18 हेक्सागोन
(ख) 12 पेन्टागोन एवं 20 हेक्सागोन
(ग) 10 पेन्टागोन एवं 20 हेक्सागोन
(घ) 12 पेन्टागोन और 18 हेक्सागोन

The C_{60} molecule has
(i) 14 pentagons and 18 hexa gons
(b) 12 pentagons and 20 hexa gons
(j) 10 pentagons and 20 hexa gons
(d) 12 pentagons and 18 hexa gons
12. किन अणुओं में $\mathrm{C}-\mathrm{H}$ बन्धन लम्बाई के घते क्रम में कौन कथन सत्य है।
(क) $\mathrm{CH}_{4}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{C}_{2} \mathrm{H}_{6}>\mathrm{C}_{2} \mathrm{H}_{2}$
(ख) $\mathrm{C}_{2} \mathrm{H}_{6}>\mathrm{CH}_{4}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{C}_{2} \mathrm{H}_{2}$
(ग) $\mathrm{CH}_{4}>\mathrm{C}_{2} \mathrm{H}_{6}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{C}_{2} \mathrm{H}_{2}$
(घ) $\mathrm{C}_{2} \mathrm{H}_{2}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{C}_{2} \mathrm{H}_{6}>\mathrm{CH}_{4}$

Which of the following represents correct order of dcreasing $\mathrm{C}-\mathrm{H}$ bond lengths in the following molecules
(j)

$$
\begin{equation*}
\mathrm{CH}_{4}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{C}_{2} \mathrm{H}_{6}>\mathrm{C}_{2} \mathrm{H}_{2} \tag{b}
\end{equation*}
$$

$$
\mathrm{C}_{2} \mathrm{H}_{6}>\mathrm{CH}_{4}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{C}_{2} \mathrm{H}_{2}
$$

(c) $\mathrm{CH}_{4}>\mathrm{C}_{2} \mathrm{H}_{6}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{C}_{2} \mathrm{H}_{2} \quad$ (d) $\mathrm{C}_{2} \mathrm{H}_{2}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{C}_{2} \mathrm{H}_{6}>\mathrm{CH}_{4}$
13. निम्नलिखित अणुओं में किसका b.p सबसे अधिक है-
(क) $\mathrm{CH}_{3}-\mathrm{OH}$
(ख) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
(ग) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
(घ) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Which of the following molecules has highest boiling point-
(h)
$\mathrm{CH}_{3}-\mathrm{OH}$
(b) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
(c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
(d) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
14. निम्नलिखित अणुओं में किसमें सिर्फ sp^{2} प्रसंकरण है-
(क) $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}$
(ख) $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$
(ग) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO}$
(घ) $\mathrm{CH}_{2}=\mathrm{CH} \cdot \mathrm{CN}$

Which of the following molecules having sp^{2}-hybridisation only
(h)
$\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}$
(b) $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$
(c) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO}$
(d) $\mathrm{CH}_{2}=\mathrm{CH} \cdot \mathrm{CN}$
15. निम्नलिखित यौगिकों में कौन अम्लीय है-
(क) CH_{4}
(ख) $\mathrm{C}_{2} \mathrm{H}_{6}$
(ग) $\mathrm{C}_{2} \mathrm{H}_{4}$
(घ) $\mathrm{C}_{2} \mathrm{H}_{2}$

Among the following compounds. Which is acidic.
(h)
CH_{4}
(b) $\mathrm{C}_{2} \mathrm{H}_{6}$
(c) $\mathrm{C}_{2} \mathrm{H}_{4}$
(d) $\mathrm{C}_{2} \mathrm{H}_{2}$
16. निम्नलिखित में सबसे शक्तिशाली भस्म कौन है-
(क) SO_{4}^{2-}
(ख) HCO_{3}^{-}
(ग) CO_{3}^{2-}
(घ) NO_{3}^{-}

Which is strongest base among the following.
(h)
SO_{4}^{2-}
(b) HCO_{3}^{-}
(c) CO_{3}^{2-}
(d) NO_{3}^{-}
17. निम्नलिखित यौगिकों में कौन अधिक अम्लीय है ?
(क)

(ख)

(ग)

(घ)

Which of the following compounds is more acidic?
(a)

(b)

(c)

(d)

18. निम्नलिखित एल्कोहलों में सांद्र HCl के प्रति क्रियाशीलता का क्रम है-

The order of reactivity of the following alcohols towards conc. HCl is
(I)

(II)

(III) $\mathrm{CH}_{3}-\stackrel{\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3} \text { }}{ }$
(a) I $>$ II $>$ III $>$ IV
(c) IV $>$ III $>$ II $>$ I
(b) I $>$ III $>$ II $>$ IV
(c) IV $>$ III $>$ II $>$ I
(d) IV $>$ III $>$ I $>$ II
(IV) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-\mathrm{OH}$
19. इनमें से कौन जलीय KOH से प्रतिक्रिया कर एसिटल्डिहाइड का निर्माण करता है ?
(क) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}$
(ख) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}$
(ग) $\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl}$
(घ)

Which of the following on hydrolysis with aqueous KOH gives acetaldehyde.
(i)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}$
(b) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}$
(c) $\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl}$
(d)

20. निम्नलिखित में एरोमेटिक कौन नहीं है ?

Which is not aromatic among ?
(h)

(b)

(c)

(d)

21. इन्जाइम जो बैक्टेरिया के सेलवाल को तोर देता है-
(क) लाइसोजाइम
(ख) लायपेज
(ग) जायमेज
(घ) डायस्टेज

The enzyme that breaks the bacterial cell wall is
(h)
Lysozyme
(b) Lipase
(c)Zymase
(d) Diastase
22. प्रथम कोटि के प्रतिक्रिया का अर्ध आयुकाल 10 मिनट है तो प्रतिक्रिया का वेग स्थिरांक है-

The half life period of first order reaction is 10 minutes. The rate constant for the reaction is
(1)
0.693 min $^{-1}$
(b) $0.00693 \mathrm{~min}^{-1}$
(c) $0.0693 \min ^{-1}$ (d) $693 \mathrm{~min}^{-1}$
23. यदि कोई सेल प्रतिक्रिया त्वरित है तब
(क) E° ॠणात्मक है
(ख) E° शून्य है
(ग) $\Delta \mathrm{G}$ ॠणात्मक है
(घ) $\Delta \mathrm{G}$ धनात्मक है

If a cell reaction is spontaneous then
(h)
E° is negative
(b) E° is zero
(c) $\Delta \mathrm{G}$ is negative
(d) $\Delta \mathrm{G}$ is positive
24. $\mathrm{Fe}^{2+}+2 e \rightarrow \mathrm{Fe} ; \mathrm{E}^{\circ}=-0.44 \mathrm{~V}$
$\mathrm{Fe}^{3+}+3 e \rightarrow \mathrm{Fe} ; \mathrm{E}^{\circ}=-0.036 \mathrm{~V}$
उपरोक्त डाटा को मानकर, $\mathrm{Fe}^{3+}+e \rightarrow \mathrm{Fe}^{2+}$ का मानक इलेक्ट्रोड विभव $\left(\mathrm{E}^{\circ}\right)$ है।
Considering the above data, the standard electrode potential (E°) for $\mathrm{Fe}^{3+}+e \rightarrow \mathrm{Fe}^{2+}$ is-
(a) +1.2 V
(b) 0.404 V
(c) 0.771 V
(d) -0.40 V
25. आदर्श घोल के लिए निम्नलिखित में से कौन शर्ते सत्य है ?

Which of the following conditions is correct for an ideal solution?
(n) $\quad \Delta \mathrm{H}_{\text {mix }}=0, \Delta \mathrm{~V}_{\text {mix }}>0$
(b) $\Delta_{\text {mix }}=0, \Delta \mathrm{~S}_{\text {mix }}>0$
(c) $\Delta \mathrm{H}_{\text {mix }}>0, \Delta \mathrm{~S}_{\text {mix }}>0$
(d) $\Delta \mathrm{H}_{\text {mix }}=0, \Delta \mathrm{~S}_{\text {mix }}<0$
26. दो द्रवों से बना एक एजोट्रोपिक घोल का क्वथणांक दोनों द्रवों से कम होता है जबकि-
(क) रॉल्ट नियम से धनात्मक विचलन दिखलाता है
(ख) रॉल्ट नियम से ऋणात्मक विचलन दिखलता है
(ग) रॉल्ट नियम से कोई विचलन नहीं दिखलाता है
(घ) इनमे से कोई नहीं
An azeotropic solution of two liquids will have boiling point lower than two liquids when it.
(u) Shows positive deviation from Raoult's law
(v) Shows negative deviation from Raoult's law
(w) Shows no deviation from Raoult's law
(x) None of these
27. इनमें से कौन कॉलायडल घोल नहीं है-
(क) धुआँ
(ख) इंक
(ग) खून
(घ) वायु

Which of the following is not colloidal solution?
(s)
Smoke
(b) Ink
(c) Blood
(d) Air
28. कौन-सा व्यवस्था कॉगूलेटिंग क्षमता के घटते क्रम में सही है ?

Which arrangement is correct decreasing order of coagulating power?
(a)
(b)

$$
\mathrm{NaCl}>\mathrm{BaCl}_{2}>\mathrm{AlCl}_{3}(\mathrm{~b}) \mathrm{BaCl}_{2}>\mathrm{AlCl}_{3}>\mathrm{NaCl}
$$

$\mathrm{AlCl}_{3}>\mathrm{BaCl}_{2}>\mathrm{NaCl}(\mathrm{d}) \mathrm{BaCl}_{2}>\mathrm{NaCl}>\mathrm{AlCl}_{3}$

SOLUTION

(1)	(b)	(2)	(d)	(3)	(b)	(4)	(c)	(5)	(b)
(6)	(a)	(7)	(c)	(8)	(b)	(9)	(a)	(10)	(d)
(11)	(c)	(12)	(c)	(13)	(c)	(14)	(c)	(15)	(d)
(16)	(c)	(17)	(d)	(18)	(c)	(19)	(d)	(20)	(b)
(21)	(d)	(22)	(c)	(23)	(c)	(24)	(c)	(25)	(a)

(a)
(27) (d)
(28) (c)

लघु उत्तरीय प्रश्न:-

Very Short Questions :- (2 marks each)

प्र० 1: व्याख्या करें-

(क) $\mathrm{Ni}(\mathrm{CO})_{4}$ चतुष्फलक है परन्तु $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ समतलवर्गीय है।
(ख) $\mathrm{CuSO}_{4} 5_{\mathbf{5}}^{\mathbf{2}} \mathrm{O}$ नीला होता है परन्तु $\mathrm{ZnSO}_{4} \mathbf{7 H}_{2} \mathrm{O}$ रंगहीन होता है।
Q. Explain the following.
(a) $\mathrm{Ni}(\mathrm{CO})_{4}$ is tetrahedral but $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{\mathbf{2 -}}$ is square planar.
(b) $\mathbf{C u S O}_{\mathbf{4}} \cdot \mathbf{5} \mathbf{H}_{\mathbf{2}} \mathrm{O}$ is blue but $\mathbf{Z n S O}_{\mathbf{4}} \mathbf{7} \mathbf{H}_{\mathbf{2}} \mathrm{O}$ is colourless.

उत्तर : (क) $\mathrm{Ni}(\mathrm{CO})_{4}$ में निकेल का ऑक्सीकरण अवस्था शून्य है तथा इसमें Ni का प्रसंकरण sp^{3} है। इसलिए $\mathrm{Ni}(\mathrm{CO})_{4}$ का संरचना चतुष्फलक होता है।

जबकि $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ में Ni का ऑक्सीकरण अवस्था +2 है तथा यह dsp^{2} प्रसंकरण दिखलाता है। अतः यह समतलीय वर्गीय संरचना दिखलाता है।

(ख) $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ के Zn^{2+} ion $\left(3 \mathrm{~d}^{10}\right)$ पूर्ण भरा रहने के कारण इसमें इलेक्ट्रॉन का संक्रमण नहीं होता है। इसलिए $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ रंगहीन है।

Ans. (a) Oxidation state of Ni in $\mathrm{Ni}(\mathrm{CO})_{4}$ is zero and CO is a strong ligand.

There is sp^{3}-hybridisation in $\mathrm{Ni}(\mathrm{CO})_{4}$. Hence it has tetrahederal structure.
Oxidation state of Ni in $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is +2 and Cl^{-}ion is weak ligand. There is $\mathrm{dsp}^{2}-$ hybridization in $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and it has square planar structure.

(c)

There is incompletely filled d-orbital in Cu^{2+} ion of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. Thus d-d transition of electron is possible in it. Hence $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is blue.
The d-orbital of $\mathrm{Zn}^{2+}\left(3 \mathrm{~d}^{10}\right)$ of $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ is completely filled. Thus no d-d- transition of electron is possible in $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. Hence $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ is colorless.

प्र० 2: व्याख्या करें।

(क) ऑक्सीजन O_{2} बनाता है परन्तु सल्फर S_{8} ।
(ख) जल तरल है परन्तु $\mathrm{H}_{2} \mathrm{~S}$ गैस है।
Q. Explain the following.
(a) Oxygen forms $\mathrm{O}_{\mathbf{2}}$ but sulphur forms S_{8}.
(b) Water is liquid but $\mathrm{H}_{2} \mathrm{~S}$ is gas.

उत्तर : (क) ऑक्सीजन का परमाणु आकार छोटा हाने के कारण यह σ-बंधन के साथ-साथ π-bond भी ऑक्सीजन परमाणुओं के साथ बना सकता है। अतः यह O_{2} के रूप में रहता है।
जबकि सल्फर का परमाणु त्रिज्या बड़ा रहने के कारण यह S और S - परमाणु के बीच π-bond का निर्माण नहीं कर सकता है। इसलिए यह S_{8} के रूप में रहता है। जिसमें S-S परमाणुओं के बीच सिर्फ σ-bond रहता है।
(ख) जल में अंतर आण्विक H-bonding होता है। जो इसके क्वथणांक को बढ़ा देता है। अत: जल तरल है।

Ans. (a) Atomic size of oxygen is smaller. It can form σ - bond as well as π - bond between O and O atoms and exists as O_{2}.

Atomic size of sulphur is bigger. It can not form π-bond together with s - bond between S and S atoms. To satisfied its valency, it forms S_{8} molecule in which all atoms of sulphur bonded with only σ - bond.
(t) There are inter molecular H-bonds in wqater molecules that increases its boiling points. Hence water is liquid.

$\mathrm{H}_{2} \mathrm{~S}$ can not form H-bonding. That is why it is gas.

प्र० 3: सल्फर डायऑक्साइड की प्रतिक्रिया KMnO_{4} एवं $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ के साथ लिखें।

Q. Write reaction of SO_{2} with KMnO_{4} and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

उत्तर : (1) SO_{2} गैस अम्लीय KMnO_{4} घोल से प्रतिक्रिया कर इसके गुलाबी रंग को रंगहीन कर देता है।

$$
2 \mathrm{KMnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+2 \mathrm{H}_{2} \mathrm{SO}_{4}
$$

(2) SO_{2} गैस अम्लीय $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ घोल से प्रतिक्रिया कर इसके नारंगी रंग को हरा कर देता है।

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}
$$

Ans. (i) SO_{2} gas reacts with acidified KMnO_{4} solution and pink colour of solution becomes colourless.

$$
\begin{gathered}
2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+5[\mathrm{O}] \\
\left.\mathrm{SO}_{2}+[\mathrm{O}] \rightarrow \mathrm{SO}_{3}\right] \times 5 \\
\frac{\left.\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}\right] \times 5}{2 \mathrm{KMnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}}+2 \mathrm{H}_{2} \mathrm{SO}_{4}
\end{gathered}
$$

(ii) When SO_{2} gas is passed throgh acidic solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$. The organe colour of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ becomes green.

$$
\begin{aligned}
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{SO}_{4} & \left.\rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{H}_{2} \mathrm{O}+3[\mathrm{O}]\right] \times 5 \\
& \left.\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}+[\mathrm{O}] \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}\right] \times 5
\end{aligned}
$$

प्र० 4: नाइट्रिक अम्ल से कॉपर कैसे प्रतिक्रिया करता है ?

Q. How nitric acid reacts with copper.

उत्तर : नाइट्रिक अम्ल विभिन्न सांद्रण में Cu से प्रतिक्रिया करता है।
(क) तनु HNO_{3} के साथ
तनु HNO_{3} से प्रतिक्रिया कर क्यूप्रिक नाइट्रेट एवं $\mathrm{N}_{2} \mathrm{O}$ गैस बनाता है।

$$
4 \mathrm{Cu}+10 \mathrm{HNO}_{3} \rightarrow 4 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{O}
$$

(ख) 50% के साथ
$\mathrm{Cu} 50 \% \mathrm{HNO}_{3}$ के साथ प्रतिक्रिया कर क्यूप्रिक नाइट्रेट एवं नाइट्रिक ऑक्साईड बनाता है।

$$
3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}
$$

(ग) सांद्र के $\mathbf{H N O}_{3}$ साथ
Cu सांद्र HNO_{3} के साथ प्रतिक्रिया कर क्यूप्रिक नाइट्रेट एवं NO_{2} गैस बनाता है।

$$
\mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}
$$

Ans. Nitric acid reacts with copper in different concentration

With dilute $\mathbf{H N O}_{3}$

Copper reacts with dilute nitric acid produces cupricnitrate and nitrous oxide gas

$$
\begin{aligned}
2 \mathrm{HNO}_{3} & \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{O}+4[\mathrm{O}] \\
\mathrm{Cu}+[\mathrm{O}] & \rightarrow \mathrm{CuO}] \times 4 \\
\mathrm{CuO}+2 \mathrm{HNO}_{3} & \left.\rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}\right] \times 4 \\
\hline 4 \mathrm{Cu}+10 \mathrm{HNO}_{3} & \rightarrow 4 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{O}
\end{aligned}
$$

(ii)

With 50\% nitric acid
Copper reacts with 50% nitric acid forms cupric nitrate and nitric oxide gas

$$
\begin{aligned}
2 \mathrm{HNO}_{3} & \rightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}+3[\mathrm{O}] \\
\mathrm{Cu}+[\mathrm{O}] & \rightarrow \mathrm{CuO}] \times 3 \\
\mathrm{CuO}+2 \mathrm{HNO}_{3} & \left.\rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}\right] \times 3 \\
\hline 3 \mathrm{Cu}+8 \mathrm{HNO}_{3} & \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}
\end{aligned}
$$

(iii)

With conc. HNO_{3}

Copper reacts with conc. HNO_{3} produces cupric nitrate and NO_{2} gas.

$$
2 \mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+[\mathrm{O}]
$$

$$
\begin{aligned}
\mathrm{Cu}+[\mathrm{O}] & \rightarrow \mathrm{CuO} \\
\mathrm{CuO}+2 \mathrm{HNO}_{3} & \left.\rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}\right] \\
\mathrm{Cu}+4 \mathrm{HNO}_{3} & \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}
\end{aligned}
$$

प्र० 5: क्लोरीन गैस (क) तनु NaOH एवं (ख) सांद्र NaOH के साथ कैसे प्रतिक्रिया करता है ?
Q. How chlorine gas reacts with (i) dilute NaOH and (ii) conc. NaOH .

उत्तर : (क) तनु NaOH के साथ
क्लोरीन गैस तनु NaOH के साथ प्रतिक्रिया कर सोडियम क्लोराइड एवं सोडियम हाइपो क्लोराइड का निर्माण करता है।

$$
2 \mathrm{NaOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}+\mathrm{NaOCl}+\mathrm{H}_{2} \mathrm{O}
$$

(ख) सांद्र NaOH के साथ
क्लोरीन गैस सांद्र एवं गर्म NaOH के साथ प्रतिक्रिया कर सोडियम क्लोराइड और सोडियम क्लोरेट का निर्माण करता है।

$$
6 \mathrm{NaOH}+3 \mathrm{Cl}_{2} \rightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

Ans. (i) With dilute $\mathbf{N a O H}$
Chlrofine gas reacts with dilute NaOH produces sodium hypochloride and sodium chloride.

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2} & \rightarrow \mathrm{HOCl}+\mathrm{HCl} \\
\mathrm{NaOH}+\mathrm{HCl} & \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{NaOH}+\mathrm{HOCl} & \left.\rightarrow \mathrm{NaOCl}+\mathrm{H}_{2} \mathrm{O}\right] \\
2 \mathrm{NaOH}+\mathrm{Cl}_{2} & \rightarrow \mathrm{NaCl}+\mathrm{NaOCl}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

(ii) With Conc. $\mathbf{N a O H}$
Cl_{2} gas reacts with hot and conc. NaOH produces sodium chloride and sodium chlorate.

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2} & \rightarrow \mathrm{HOCl}+\mathrm{HCl}] \times 3 \\
\mathrm{NaOH}+\mathrm{HCl} & \left.\rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}\right] \times 3 \\
\mathrm{NaOH}+\mathrm{HOCl} & \left.\rightarrow \mathrm{NaOCl}+\mathrm{H}_{2} \mathrm{O}\right] \times 3 \\
3 \mathrm{NaOCl} & \rightarrow \mathrm{NaClO}_{3}+2 \mathrm{NaCl} \\
\hline 6 \mathrm{NaOH}+3 \mathrm{Cl}_{2} & \rightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

प्र० 6: क्लोरोफॉर्म किस प्रकार (क) Ag (ख) इथाईल एमीन से प्रतिक्रिया करता है।
Q. How chloroform reacts with
(i) $\mathbf{A g}$
(ii) Ethyl amine

उत्तर : (क) क्लोरोफॉर्म को सिल्वर चूर्ण के साथ गर्म करने पर एसिटिलीन गैस प्राप्त होता है।

(ख) क्लोरोफॉर्म को ईथाइल एमीन एवं एल्कोहलीय KOH के साथ गर्म करने पर कार्बाइल एमीन का सड़ा अंडा के जैसा गंध प्राप्त होता है।

$$
\underset{\text { Ethyl amine }}{\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{NH}_{2}}+\underset{\text { Chloroform }}{\mathrm{CHCl}_{3}}+3 \mathrm{KOH} \rightarrow \underset{\text { Carbylamine }}{\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{NCC}}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}
$$

Ans. (i) Chloroform is heated with Ag-dust produces acetylene gas.

(ii) Chloroform is heated with ehtylamine and alcoholic KOH produces rotten egg smell of carbyl amine

$$
\underset{\text { Ethyl amine }}{\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{NH}_{2}}+\underset{\text { Chloroform }}{\mathrm{CHCl}_{3}}+3 \mathrm{KOH} \rightarrow \underset{\text { Carbylamine }}{\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{NCC}}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}
$$

प्र० 7: एल्डॉल प्रतिक्रिया क्या है ?
Q. What is aldol reaction?

उत्तर : कोई एल्डिहाइड जिसमें $\alpha-\mathrm{H}$ उपस्थित रहता है तनु NaOH की उपस्थिति में एल्डॉल का निर्माण करता है।

Ans. An aldehyde having $\alpha-\mathrm{H}$ reacts with dilute NaOH produces aldol.

प्र० 8: हॉफमैन-ब्रोमाइड प्रतिक्रिया का वर्णन करें।
Q. Discuss Hoffmann's bromide reaction.

उत्तर : एमाईड को Br_{2} और सांद्र KOH के घोल के साथ गर्म करने पर 1° एमीन प्राप्त होता है। इस प्रक्रिया द्वारा एमाइड $\left(\stackrel{\mathrm{O}}{-\mathrm{C}-\mathrm{NH}_{2}}\right)$ समूह को $-\mathrm{NH}_{2}$ में बदला जाता है।

Ans. The amide is heated with bromine and concentrated aqueous or alcoholic KOH solution produces 1°-amine.

By this reaction amide $\left(\stackrel{\mathrm{O}}{\|} \underset{-}{\mathrm{O}}-\mathrm{NH}_{2}\right)$ group converted into $-\mathrm{NH}_{2}$ group.

प्र० 9: गेलवनिक सेल के लिए साम्यस्थिरांक का समीकरण निकालें।
Q. Derive an equtaion for equilibrium constant in a galvanic cell.

उत्तर : सेल प्रतिक्रिया

$$
\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{lL}+\mathrm{mM} \text { के लिए }
$$

Nearnt's equation,

$$
\begin{equation*}
\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log \frac{[\mathrm{~L}]^{1}[\mathrm{M}]^{\mathrm{m}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}} \tag{1}
\end{equation*}
$$

जहाँ, $\mathrm{E}_{\text {cell }}^{\circ}=$ सेल का मानक EMF
$\mathrm{R}=$ गैस स्थिरांक
$\mathrm{T}=$ तापक्रम (केल्वीन में)
$\mathrm{F}=$ फैराडे संख्या
$\mathrm{n}=$ सेल प्रतिक्रिया में प्रयुक्त इलेक्ट्रॉन के मोलों की संख्या
सेल में साम्यावस्था के लिए

$$
\mathrm{E}_{\text {cell }}=0.0 \text { volt }
$$

तथा $\frac{[\mathrm{L}]^{\mathrm{l}}[\mathrm{M}]^{\mathrm{m}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}=\mathrm{K}=$ साम्यास्थिरांक
अतः साम्यावस्था में उपरोक्त समीकरण

$$
\begin{equation*}
\mathrm{E}_{\text {cell }}^{\circ}=\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log \mathrm{~K} \tag{2}
\end{equation*}
$$

या, $\quad \mathrm{nFE}_{\text {cell }}^{\circ}=2.303 \mathrm{RT} \log \mathrm{K}$
चूंकि, $\quad \mathrm{nFE}_{\text {cell }}^{\circ}=-\Delta \mathrm{G}^{\circ}$
$\therefore \quad \Delta \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \log \mathrm{K}$
Ans. Nearest equation for $\mathrm{E}_{\text {cell }}$ is written for the reaction
$\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{lL}+\mathrm{mM}$ in a cell

$$
\begin{equation*}
\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log \frac{[\mathrm{~L}]^{1}[\mathrm{M}]^{\mathrm{m}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}} \tag{1}
\end{equation*}
$$

Where, $\mathrm{E}_{\text {cell }}^{\circ}=$ Standard EMF of cell
$\mathrm{T}=$ Temperature in Kelvin
$\mathrm{R}=$ Gas constant
F = Faraday's number
$\mathrm{n}=$ Number of moles of electrons used in cell reaction
At equilibrium

$$
\mathrm{E}_{\text {cell }}=0.0 \text { volt }
$$

And $\frac{[\mathrm{L}]^{\mathrm{l}}[\mathrm{M}]^{\mathrm{m}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}=\mathrm{K}=$ equibrium constant
Hence above equation at equilibrium becomes as follow

$$
\begin{equation*}
\mathrm{E}_{\text {cell }}^{\circ}=\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log \mathrm{~K} \tag{2}
\end{equation*}
$$

or, $\quad \mathrm{nFE}_{\text {cell }}^{\circ}=2.303 \mathrm{RT} \log \mathrm{K}$
since, $\mathrm{nFE}_{\text {cell }}^{\circ}=-\Delta \mathrm{G}^{\circ}$
$\therefore \Delta \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \log \mathrm{K}$

प्र०10: सामान्य घनीय रवा (S.C.C.) के लिए पैकिंग प्रभाज की गणना करें।

Q. Calculate the percentage packing fraction for simple cubic lattice (S.C.C.).

Ans. Let us consider,
Radius of atom in packing $=r$
Edge of the cube $=a$
Volume of atom, $\mathrm{v}=\frac{4}{3} \pi r^{3}$
Volume of Cube, $\mathrm{V}=a^{3}$
PAcking fraction $=\frac{\mathrm{v}}{\mathrm{V}}=\frac{4 \pi r^{3}}{3 a^{3}}$
For S.C.C., $r=\frac{a}{2}$
\therefore Packing fraction $=\frac{4 \pi \times(a / 2)^{3}}{3 a^{3}}=\frac{\pi}{6}=0.52$
$\%$ Packing fraction $=52$

प्र० 11:प्रतिक्रिया के प्रथम कोटि के लिए अर्ध आयु की गणना करें।

Q. Derive half life period for first order reaction.

उत्तर : प्रतिक्रिया के प्रथम कोटि के समीकरण

$$
\begin{gathered}
k=\frac{2.303}{t} \log \frac{a}{(a-x)} \\
t=\frac{2.303}{k} \log \frac{a}{(a-x)} \\
t \Rightarrow t_{1 / 2} \\
a-x \Rightarrow \frac{a}{2} \\
\therefore \quad t_{t / 2}=\frac{2.303}{k} \log \frac{a}{a / 2} \\
t_{t / 2}=\frac{2.303}{k} \log 2 \\
t_{t / 2}=\frac{2.303 \times 0.301}{k} \\
t_{t / 2}=\frac{0.693}{k}
\end{gathered}
$$

या
जब

Ans. Equation for $1^{\text {st }}$ order reaction

$$
\begin{aligned}
& \qquad \begin{array}{l}
k=\frac{2.303}{t} \log \frac{a}{(a-x)} \\
\text { Or, } \\
\text { When, } \\
t=\frac{2.303}{k} \log \frac{a}{(a-x)} \\
t \Rightarrow t_{1 / 2} \\
a-x \Rightarrow \frac{a}{2} \\
\therefore \quad t_{t / 2}=\frac{2.303}{k} \log \frac{a}{a / 2} \\
t_{t / 2}=\frac{2.303}{k} \log 2 \\
t_{t / 2}=\frac{2.303 \times 0.301}{k} \\
t_{t / 2}=\frac{0.693}{k}
\end{array}
\end{aligned}
$$

दीर्घ उत्तरीय प्रश्नः-

Long Questions :-

प्र० 1: संपर्क विधि से सल्फ्यूरिक अम्ल के उत्पादन के सिद्धांतों का वर्णन करें।
Q. Describe the principle of manufacture of sulphuric acid by contact process.

उत्तर : सल्फ्यूरिक अम्ल का उत्पादन निम्न चरणों में किया जाता है-
(क) SO_{2} का ऑकसीकरण -
SO_{2} का ऑक्सीकरण हवा के द्वारा उत्प्रेरक की उपस्थिति में किया जाता है।

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3} ; \Delta H=-Q
$$

यह प्रतिक्रिया उत्क्रमणीय, प्रतिक्रिया में आयतन का संकुचन एवं उष्माक्षेपी है। अतः लिशेतेलिए के सिद्धांत अनुसार-

- निम्न दाब पर SO_{3} का उत्पादन बढ़ता है।
- निम्न तापक्रम पर SO_{3} का उत्पादन अधिक होना चाहिए। परन्तु निम्न तापक्रम पर SO_{2} और O_{2} प्रतिक्रिया नहीं करता है। अतः महत्तम तापक्रम $450^{\circ} \mathrm{C}$ पर उत्प्रेरक $\mathrm{V}_{2} \mathrm{O}_{5}$ का उपयोग किया जाता है।
(ख) प्राप्त SO_{3} को $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ में घुलाने पर ओलियम $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ प्राप्त होता है।

$$
\begin{array}{r}
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3} \rightarrow \underset{\text { Mलियम }}{\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}} \text {. }
\end{array}
$$

(ग) ईच्छित सांद्रता का सल्फ्यूरिक अम्ल बनाने के लिए ओलियम में जल का निश्चित मात्रा मिलाया जाता है।

$$
\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}
$$

Ans. Principle :-

(i) The process involves the oxidation of sulphur dioxide by air in the presence of catalyst $\mathrm{V}_{2} \mathrm{O}_{5}$.

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \stackrel{\mathrm{~V}_{2} \mathrm{O}_{5}}{\rightleftharpoons \text { heat }} 2 \mathrm{SO}_{3} ; \Delta H=-Q
$$

(ii) Sulphur trioxide is dissolved in 98% sulphuric acid, forms oleum.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3} \rightarrow \underset{\text { Oleum }}{\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}}
$$

(iii) Sulphuric acid of any desire concentration is prepared from oleum with water.

$$
\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}
$$

The oxidation of SO_{2} is reversible process, contraction in volume and exothermic.
Hence applying Le Chatelier's principle to obtained greater yield of SO_{3}.

- Reaction is carried out high peressure.
- At low temperature production of SO_{3} should increase. But at lower temperature SO_{2} does not oxidise. Hence at optimum temperature $450^{\circ} \mathrm{C}$ catalyst $\mathrm{V}_{2} \mathrm{O}_{5}$ is applied.

प्र० 2: निम्नलिखित यौगिकों का IUPAC नाम लिखें।

Q. Write IUPAC name of the following compounds.
(a)

(b)

(c) $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$
(d)

(e)

उत्तर : (क) 3-हाइड्रॉक्सी ब्यूटेनल
(ख) हेक्स-3-इन-5-ऑन-1-अल
(ग) पेन्ट-1-इन-4-आइन
(घ) सायक्लो पेन्ट-2-इन-1-कार्बोनल्डिहाइड
(ड़) सायक्लो एजा ब्यूटेन
Ans. (a) 3-Hydroxy butanal
(b) Hex-3-en-5-one-1-al
(c) Pent-1-ene-4-yne
(d) Cyclopent-2-e ne-1-carbonaldehyde
(e) Cyclo aza butane

प्र० 3: आप इनके बीच अंतर स्पष्ट कैसे करेगें।
(क) फॉर्मिक अम्ल और एसिटिक अम्ल
(ग) फॉर्मल्डिहाइड और एस्टिल्डिहाइड
(ड़) एसिटल्डिहाइड और बेन्जल्डिहाइड
Q. How eill you distinguish between
(b) Formaldehyde and acetaldehyde
(d) Ethyl amine and aniline
(ख) इथाईल एल्कॉहल और डायईथाइल ईथर
(घ) ईथाइल एमीन और एनिलीन
(a) Formic acid and acetic acid
(c) Ethyl alcohol and diethyl ether
(e) Acetaldehyde and benzaldehyde

उत्तर : (क) फॉर्मिक अम्ल टॉलेन्स अभिकारक के साथ सिल्वर मिरर बनाता है जबकि एसिटिक अम्ल नहों बनाता है।

$$
\mathrm{HCOOH}+\mathrm{Ag}_{2} \mathrm{O} \xrightarrow[\Delta]{\text { Tollen's reagent }} 2 \mathrm{Ag}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

(ख) ईथाइल एल्कोहल आयोडोफॉर्म जाँच दिखलाता है जबकि डायईथाइल ईथर नहीं दिखलाता है।

$$
\mathrm{CH}_{3}-\mathrm{CHO}+4 \mathrm{NaOH}+3 \mathrm{I}_{2} \rightarrow \mathrm{CHI}_{3}+3 \mathrm{NaI}+\mathrm{HCOONa}+3 \mathrm{H}_{2} \mathrm{O}
$$

(ग) एसिस्टिट्डिहाइउ आयोडोफॉर्म जाँच दिखलाता है जबकि फॉर्मल्डिहाइड नहीं दिखलाता है।

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{OH}+4 \mathrm{I}_{2}+6 \mathrm{NaOH} \rightarrow \mathrm{CHI}_{3}+5 \mathrm{NaI}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{HCOONa}
$$

(घ) एनिलीन बेन्जीन डायजोनियम क्लोराइड के साथ एजो डाई बनाता है जबकि इथाइल एमीन नहीं बनाता है।

(ड़) एस्टिल्डिहाइड फेहलिंग घोल के साथ लाल अवक्षेप देता है परंतु बेन्जल्डिहाइड नहीं।

$$
\mathrm{CH}_{3}-\mathrm{CHO}+\mathrm{CuO} \xrightarrow[\text { solution }]{\text { Fehling's }} \mathrm{CH}_{3}-\mathrm{COOH}+\mathrm{Cu}_{2} \mathrm{O}
$$

Ans. (a) Formic acid produces silver mirror with Tollen's reagent but acetic acid does not.

$$
\mathrm{HCOOH}+\mathrm{Ag}_{2} \mathrm{O} \xrightarrow[\Delta]{\text { Tollen's reagent }} 2 \mathrm{Ag}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

(o) Acetaldehyde performs idoform test but formaldeyde does not.

$$
\mathrm{CH}_{3}-\mathrm{CHO}+4 \mathrm{NaOH}+3 \mathrm{I}_{2} \rightarrow \mathrm{CHI}_{3}+3 \mathrm{NaI}+\mathrm{HCOONa}+3 \mathrm{H}_{2} \mathrm{O}
$$

(p) Ethyl alcohol perform idoform test but diethyl ether does not.

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{OH}+4 \mathrm{I}_{2}+6 \mathrm{NaOH} \rightarrow \mathrm{CHI}_{3}+5 \mathrm{NaI}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{HCOONa}
$$

(q) Aniline perform azodye test with benzene diazonium chloride but ethyl amine does not.

(r) Acetaldehyde heated with Fehling's solution gives red precipitate of cuprous oxide but benzaldeyde does not.

$$
\mathrm{CH}_{3}-\mathrm{CHO}+\mathrm{CuO} \xrightarrow[\text { solution }]{\text { Fehling's }} \mathrm{CH}_{3}-\mathrm{COOH}+\mathrm{Cu}_{2} \mathrm{O}
$$

प्र० 4: फैराडे के विधुत विच्छेदन के नियमों को लिखें।

Q. Write FAraday's Law of electrolysis.

उत्तर : विधुत विच्छेदन के संबंध में फैराडे ने दो नियम प्रतिपादित किये-
(क) फैराडे के विधु विच्छेदन का प्रथम नियम:- "किसी इलेक्ट्रोड पर मुक्त पदार्थ की मात्रा विधुत अपघट्य के घोल में प्रवाहित विधुत आवेश के समानुपाती होता है।"

यदि किसी विधुत अपघट्य के घोल में Q आवेश प्रवाहित होने पर m मात्रा मुक्त होती है तो

$$
\begin{aligned}
& \mathrm{m} \propto \mathrm{Q} \\
& \mathrm{Q}=\text { विधुत धारा एम्पीयर में } \times \text { समय सेकेंड में } \\
&=\mathrm{c} \times \mathrm{t}=\mathrm{ct} \text { coulomb }
\end{aligned}
$$

So, $m \propto c t$

$$
\begin{equation*}
\mathrm{m}=Z \cdot \mathrm{ct} \tag{1}
\end{equation*}
$$

जहाँ, $\mathrm{Z}=$ विधुत रसायनिक समतुल्यांक
(ख) फैराडे के विधुत विच्छेदन का द्वितीय नियमः- "श्रेणीक्रम में जुटा विभिन्न विधुत अपघट्य के घोलों में समान विधुतीय आवेश प्रवाहित करने पर प्रत्येक इलेक्ट्रोड पर मुक्त पदार्थ की मात्रा उसके रसायनिक समतुल्यांक के समानुपाती होता है।"

मान लिया कि CuSO_{4} और AgNO_{3} के घोलों को श्रेणीक्रम में जोड़कर उसमें विद्युत का समान आवेश प्रवाहित किया जाता है तो

$$
\begin{aligned}
& \text { मुक्त } \mathrm{Cu} \text { की मात्रा }=\mathrm{m}_{1} \\
& \mathrm{Cu} \text { का समतुल्यांक भार }=\mathrm{E}_{1} \\
& \text { मुक्त } \mathrm{Ag} \text { की मात्रा }=\mathrm{m}_{2} \\
& \mathrm{Ag} \text { का समतुल्याक }=\mathrm{E}_{2}
\end{aligned}
$$

अत:,

$$
\begin{aligned}
& \mathrm{m}_{1} \propto \mathrm{E}_{1} \\
& \mathrm{~m}_{1}=\mathrm{k} \cdot \mathrm{E}_{1}
\end{aligned}
$$

जहाँ, $\mathrm{k}=$ समानुपातिक स्थिरांक

$$
\begin{array}{ll}
& m_{2} \propto E_{2} \\
& m_{2}=k \cdot E_{2} \\
\therefore \quad & \frac{m_{1}}{m_{2}}=\frac{E_{1}}{E_{2}} \\
& m_{1}=Z_{1} c t \\
& m_{2}=Z_{2} \mathrm{ct} \\
\therefore \quad & \frac{E_{1}}{E_{2}}=\frac{Z_{1} \mathrm{ct}}{\mathrm{Z}_{2} \mathrm{ct}} \\
\therefore \quad & \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}} \tag{2}
\end{array}
$$

or, $\frac{\mathrm{E}}{\mathrm{Z}}=$ constant $=96500$ coulomb $=$ फैराडे संख्या (F)

$$
\begin{equation*}
\therefore \quad \frac{E}{Z}=F \tag{3}
\end{equation*}
$$

Ans. Regarding electrolysis, FAraday proposed two laws of electrolysis.
(i)

Faraday's first law of electrolysis :- "When electric current is passed through the solution of an electrolyte, the amount deposited at any
electrode is directly proportional to the quantity of electrical charge passed through the electrolyte". If m gram of a substance deposited by passing Q coulomb of electrical charge.

$$
\mathrm{m} \propto \mathrm{Q}
$$

$\mathrm{Q}=$ current in ampere \times time in second
So, $\quad m \propto c t$
$\mathrm{m}=Z \cdot \mathrm{ct}$
Where, $Z=$ electrochemical equivalent.
(ii)

Faraday's second law of electrolysis :- "When same quantity of electrical charge is passed through the solution of different electrolytes connected in series, the mass deposited at each electrode isproportional to their chemical equivalent."

Let us consider two voltameters containing solution of CuSO_{4} and AgNO_{3} respectively and connected in series.

Same quantity of electrical charge, Q is passed through there solutions.
Mass of Cu deposited $=\mathrm{m}_{1}$
Equivalent weight of $\mathrm{Cu}=\mathrm{E}_{1}$
Mass of Ag deposited $=\mathrm{m}_{2}$
Equivalent weight of $\mathrm{Ag}=\mathrm{E}_{2}$
Then,

$$
\begin{aligned}
& \mathrm{m}_{1} \propto \mathrm{E}_{1} \\
& \mathrm{~m}_{1}=\mathrm{k} \cdot \mathrm{E}_{1}
\end{aligned}
$$

Where $\mathrm{k}=$ proportional constant

$$
\begin{align*}
\mathrm{m}_{2} & \propto \mathrm{E}_{2} \\
\mathrm{~m}_{2} & =\mathrm{k} \cdot \mathrm{E}_{2} \\
\therefore \quad \frac{m_{1}}{m_{2}} & =\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}} \tag{1}
\end{align*}
$$

$$
\begin{align*}
& m_{1}=Z_{1} \mathrm{ct} \\
& m_{2}=Z_{2} \mathrm{ct} \\
& \therefore \quad \frac{E_{1}}{E_{2}} \\
&=\frac{Z_{1} \mathrm{ct}}{Z_{2} \mathrm{ct}} \\
& \therefore \quad \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}} \\
&=\frac{Z_{1}}{Z_{2}} \tag{3}\\
& \text { or, } \frac{E}{Z}=\text { constant }=96500 \text { coulomb }=\text { Faraday's number (F) } \\
& \therefore \quad \frac{E}{Z}=F
\end{align*}
$$

CHEMISRY (Set-9)

सही उत्तर चुने:-

Choose the correct answer :- (1 mark each)

1. एवोगाड्रो संख्या (N) बराबर है-
(क) 6.023×10^{24} (ख) 6.023×10^{23}
(ग) 6.023×10^{-23} (घ) 11.2

Avogadro's number (N) is equal to-
(a) 6.023×10^{24}
(b) 6.023×10^{23}
(c) 6.023×10^{-23}
(d) 11.2
2. क्रिस्टल जालक में प्रति परमाणु अष्टफलकीय रिक्तिकाओं की संख्या होती है-
(क) 1
(ख) 2
(ग) 4
(घ) 8

The number of tetrahedral voids for atom is a crystal lattice is-
(j) 1
(b) 2
(c) 4
(d) 8
3. कौन अणुसंख्या गुणधर्म नहीं है ?
(क) ΔT_{f}
(ख) π
(ग) ΔT_{b}
(घ) K_{b}

Which is not a colligative property?
(i)
ΔT_{f}
(b) π
(c) ΔT_{b}
(d) K_{b}
4. 250 मी०ली॰ घोल में 4 ग्राम NaOH घुले रहने पर घोल की मोलरता होगी-
(क) 1.0
(ख) 0.4
(ग) 2.0
(घ) 0.05

4 g of NaOH is dissolved is 250 ml of a solution, the molarity of the solution will be
(g)
1.0
(b) 0.4
(c) 2.0
(d) 0.05
5. समपरासरी विलयन में समान होती है-
(क) मोलर सांद्रता
(ख) मोललता
(ग) नार्मलता
(घ) इनमें से कोई नहीं

Isotonic solutions have same
(a) Malar concentration
(b) Malality
(c) Normality
(d) None of these
6. $27^{\circ} \mathrm{C}$ पर 1 M विलयन का परासरण दाब है-
(क) 2.46 atm
(ख) 24.6 atm
(ग) 1.21 atm
(घ) 12.1 atm

The osmotic pressure of a 1 M solution at $27^{\circ} \mathrm{C}$ is-
(a) 2.46 atm
(b) 24.6 atm
(c) 1.21 atm
(d) 12.1 atm
7. किसका क्वथनांक 1 वायुमंडल दाब पर सबसे उच्च होता है ?
(क) 0.1 M NaCl
(ख) 0.1 M सुक्रोज
(ग) $0.1 \mathrm{M} \mathrm{BaCl}_{2}$
(घ) 0.1 M ग्लूकोज

Which has highest boiling point under 1 atm pressure-
(i)
0.1 M NaCl
(b) 0.1 M Sucrose
(c) $0.1 \mathrm{M} \mathrm{BaCl}_{2}$
(d) 0.1 M Glucose
8. $0.1 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ विलयन के लिए वाण्टहॉफ गुणांक 2.74 है। वियोजन की मात्रा होगी-
(क) 91.3%
(ख) 87%
(ग) 100%
(घ) 74%

The Van't Hoff factor of $0.1 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ solutions is 2.74 . the degree of dissociation will be-
(m)
91.3\%
(b) 87%
(c) 100%
(d) 74%
9. निम्नलिखित में किसमें द्विआघूर्ण ज्यादा होता है ?
(क) $\mathrm{CH}_{3} \mathrm{Cl}$
(ख) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(ग) CHCl_{3}
(घ) CCl_{4}

Which of the following has maximum dipole moment?
(i)
$\mathrm{CH}_{3} \mathrm{Cl}$
(b) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(c) CHCl_{3}
(d) CCl_{4}
10. अष्टफलकीय रिक्त का त्रिज्या अनुपात क्या है ?
(क) 0.212
(ख) 0.314
(ग) 0.414
(घ) 0.205

What is the radius ratio of octahedral void-
(i)
0.212
(b) 0.314
(c) 0.414
(d) 0.205
11. $\mathrm{H}_{2} \mathrm{SO}_{4}$ है-
(क) अम्ल
(ख) भष्म
(ग) क्षार
(घ) लवण
$\mathrm{H}_{2} \mathrm{SO}_{4}$ is-
(k)
Acid
(b) Base
(c) Alkali
(d) Salt
12. त्रिक्षारकीय अम्ल है-
(क) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(ख) $\mathrm{H}_{3} \mathrm{PO}_{3}$
(ग) $\mathrm{H}_{3} \mathrm{PO}_{2}$
(घ) HPO_{3}

Tribasic acid is-
(k)
$\mathrm{H}_{3} \mathrm{PO}_{4}$
(b) $\mathrm{H}_{3} \mathrm{PO}_{3}$
$\mathrm{H}_{3} \mathrm{PO}_{2}$
(d) HPO_{3}
13. लैन्थेनाइड संकुचन का तात्पर्य है-
(क) घनत्व में कमी
(ख) द्रव्यमान में कमी
(ग) आयनिक त्रिज्या में कमी
(घ) रेडियो एक्टिवता में कमी

Lanthanoid contraction implies-
(i)
Decrease in density
(b) Decrease in mass
(c) Decrease in ionic radii
(d) Decrease in radioactivity
14. पौटेशियम फेरोसायनाइड में लिगेन्ड है-
(क) K^{+}
(ख) CN^{-}
(ग) Fe^{3+}
(घ) Na^{+}

The ligand in Potassium Ferrocyanide is
(i)
K^{+}
(b) CN^{-}
(c) Fe^{3+}
(d) Na^{+}
15. निम्नलिखित में कौन पाराचुम्बकीय है-
(क) Zn^{2+}
(ख) Cu^{2+}
(ग) Sc^{3+}
(घ) Mn^{2+}

Which is paramagnetic in the following-
(i)
Zn^{2+}
(b) Cu^{2+}
(c) Sc^{3+}
(d) Mn^{2+}
16. $\mathrm{Ni}(\mathrm{CO})_{4}$ में निकेल की ऑक्सीकरण संख्या है-
(क) 1
(ख) 3
(ग) 0
(घ) 2

The oxidation number of Nickel in $\mathrm{Ni}(\mathrm{CO})_{4}$ is-
(i)
1
(b) 3
(c) 0
(d) 2
17. साइनाइड विधि से निष्कर्षित धातु है-
(क) सिल्वर
(ख) कॉपर
(ग) आयरन
(घ) सोडियम

The metal extracted by cyanide process is-
(h)
Silver
(b) Copper
(c) Iron
(d) Sodium
18. निम्न में कौन क्षारीय भूमिज तत्व है ?
(क) कार्बन
(ख) सोडियम
(ग) जिंक
(घ) लोहा

Which one of the following is an alkaline earth element?
(h)
Carbon
(b) Sodium
(c) Zinc
(d) Iron
19. किस ग्रुप के तत्वों को संक्रमण तत्व कहा जाता है ?
(क) p -ब्लॉक
(ख) s -ब्लॉक
(ग) d -ब्लॉक
(घ) f-ब्लॉक

Which block of elements are known as transition elements ?
(j)
p-block
(b) s-block
(c) d-block
(d) f-block
20. निम्नलिखित में सबसे कम भास्मिक है-
(क) NCl_{3}
(ख) NBr_{3}
(ग) NI_{3}
(घ) NF_{3}

Which one of the following is least basic?
(i)
NCl_{3}
(b) NBr_{3}
(c) NI_{3}
(d) NF_{3}
21. निम्नलिखित में कौन हाइड्रोजन बंधन नहीं बनाता है ?
(क) NH_{3}
(ख) $\mathrm{H}_{2} \mathrm{O}$
(ग) HCl
(घ) HF

Which one of the following does not form hydrogen bonding ?
(i)
NH_{3}
(b) $\mathrm{H}_{2} \mathrm{O}$
(c) HCl
(d) HF
22. विटामिन A कहलाता है-
(क) ऐस्कार्बिक अम्ल
(ख) रेटिनोल
(ग) कैलसीफिरोल
(घ) टोकोफिरोल

Vitamine A is called-
(m)
Ascorbic acid
(b) Retinol
(c) Calciferol
(d) Tocopherol
23. ईथर में ऑक्सीजन परमाणु है ?
(क) अत्यधिक क्रियाशील
(ख) विस्थापित योग्य
(ग) सक्रिय
(घ) तुलनात्मक रूप से अक्रिय

Oxygen atom in ether is-
(i)
Very active
(b) Replaceable
(j)
Active
(d) Comparatively inert
24. निम्न में से कौन-सा डाइसैकेराडस है ?
(क) लैक्टोज
(ख) स्टार्च
(ग) सेलुलोज
(घ) फ्रक्टोज

Which of the following is a disaccharide-
(1)
Lactose
(b) Starch
(c) Cellulose
(d) Fructose
25. इथेन में कार्बन का संकरण है-
(क) $s p^{3}$
(ख) $s p^{2}$
(ग) $s p$
(घ) $s p^{3} d^{2}$

Hybridisation of carbon in ethane is-
(s)
$s p^{3}$
(b) $s p^{2}$
(c) $s p$
(d) $s p^{3} d^{2}$
26. इथाइन में π बाण्ड की संख्या है-
(क) एक
(ख) दो
(ग) तीन
(घ) चार

Number of π bonds in ehyne is-
(y)
One
(b) Two
(c) Three
(d) Four
27. ज्वीटर आयन बनाने में कौन समर्थ है ?
(क) $\mathrm{CH}_{3} \mathrm{NO}_{2}$
(ख) $\mathrm{CH}_{3} \mathrm{COOH}$
(ग) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(घ) $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$

Which is able to form Zwittre ion?
(u)
$\mathrm{CH}_{3} \mathrm{NO}_{2}$
(b) $\mathrm{CH}_{3} \mathrm{COOH}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(d) $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$
28. $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ द्वारा कितने समावयवी ईथर प्रदर्शित करते हैं ?
(क) 3
(ख) 2
(ग) 4
(घ) 5

How many isomeric ethers are represented by the molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$.
(v)
3
(b) 2
(c) 4
(d) 5

SOLUTION

(1)	(b)	(2)	(b)	(3)	(d)	(4)	(b)	(5)	(a)
(6)	(b)	(7)	(c)	(8)	(c)	(9)	(c)	(10)	(c)
(11)	(a)	(12)	(a)	(13)	(c)	(14)	(b)	(15)	(b)
(16)	(c)	(17)	(a)	(18)	(c)	(19)	(c)	(20)	(c)
(21)	(c)	(22)	(b)	(23)	(b)	(24)	(a)	(25)	(a)
(26)	(b)	(27)	(d)	(28)	(a)				

लघु उत्तरीय प्रश्न:-
Very Short Questions :- (2 marks each)

प्र01. : अभिक्रिया के वेग स्थिरांक और अभिक्रिया के वेग में क्या अंतर है ?
Q. What is difference between rate constant and rate of reaction ?

उत्तर : किसी अभिक्रिया के वेग स्थिरांक और अभिक्रिया के वेग में निम्नलिखित अंतर है-

अभिक्रिया के वेग स्थिरांक	अभिक्रिया के वेग
(1) यह अवकलन वेग समीरकण में समानुपाती स्थिरांक होता है। (2) यह स्थिर होता है और अभिक्रिया की प्रगति पर निर्भर नहीं करता है। (3) यह किसी खास बिन्दु पर अभिक्रिया के वेग को सूचित	(1) यह किसी भी समय पर अभिक्रियकों का उत्पदों में बदलने की तीव्रता है। (2) यह हमेशा अभिक्रिया की प्रगति के साथ-साथ घटता है। (3) यह किसी खास समय पर अभिक्रियक की सान्द्रता पर

करता है, जब प्रत्येक अभिक्रियक की सान्द्रता एक हो। (4) भिन्न-भिन्न अभिक्रियाओं की इकाई भिन्न-भिन्न होती है।	निर्भर करता है। (4) सभी अभिक्रियाओं की इकाईयाँ समान होती है। प्रति मोल सेकंड

Ans. Difference between rate constant and rate of reaction:-

Rate constant of a reaction	Rate of a reaction
(i) It is constant proportionality in the rate law expression.	(i) It is the speed of which the reactants are converted into products at any moment of time.
(ii) It is constant and does not depend on the progress of the reaction.	(ii) It decreases with the progress of reaction generally.
(iii) It refers to the rate of the reaction at the specific point when concentration of every reacting is unity.	(iii) It depends upon the concentration of reactant species at that moment of time.
(iv) It has different units for different reactions.	(iv) It has same units for all reactions/mole sec.

प्र०2. : संक्षेप में परिभाषित करें।

(क) ब्राउनियन गति (ख) अभिक्रिया की अर्द्ध आयु

Define in short.

(a) Brownian movement (b) Half life of a reaction

उत्तर : (क) ब्राउनियन गति - कोलाईडल कणों का लगातार टेढ़े-मेढ़े पथों पर गतिमान होने को ब्राउनियन गति कहा जाता है। यह विलायन के अणुओं तथा कोलाइडल कणों के बीच लगातार होने वाले टक्करों के कारण होता है।
(ख) अभिक्रिया की अर्द्ध-आयु $\left(\mathbf{t}_{1 / 2}\right)$ - वह समय जिसमें अभिकारक की सान्द्रता घटकर आधी हो जाती है, अभिक्रिया की अर्द्ध आयु कहलाता है।
प्रथम कोटि की अभिक्रिया की अर्द्ध-आयु

$$
t_{1 / 2}=\frac{0.693}{k}
$$

जहाँ $\mathrm{K}=$ प्रथम कोटि की अभिक्रिया का वेग स्थिरांक है।
Ans. (a) Brownian movement - The continuous zig-zag motion of colloidal particles is called Brownian movement. It is due to continuous collisions between solvent molecules and colloidal particles.
(b) The time in which concentration of reactant becomes half of its original volume, is called half-life time.

$$
t_{1 / 2}=\frac{0.693}{k}
$$

Where k is rate constant of first order reaction.

प्र० 3.: परासरण क्या है ?

Q. What is osmosis?

उत्तर : अर्द्ध-पारागम्य झिल्ली से होकर विलायक के अणुओं का विलायक से विलयन की ओर होने वाले प्रवाह को परासरण कहा जाता है।
Ans. The flow of solvent molecules from solvent towards the solution through a semipermeable membrane is called osmosis.

प्र० 4.: नीचे दिये गये सेल के लिए

$$
\mathrm{Zn}(\mathrm{~s}) / \mathrm{ZnSO}_{4} \| \mathrm{CuSO}_{4}(a q) \mid \mathrm{Cu}(s)
$$

मान सेल विभव की गणना करें ? यदि मानक अवकारक इलेक्ट्रॉड विभव $\mathrm{Cu}^{2+} / \mathrm{Cu}$ तथा $Z n^{2+} / Z n$ के लिए क्रमशः +0.34 V तथा -0.76 V दिया हुआ है।
For the cell shown below

$$
\mathrm{Zn}(\mathrm{~s}) / \mathrm{ZnSO}_{4} \| \mathrm{CuSO}_{4}(a q) \mid \mathrm{Cu}(s)
$$

Calculated standard cell potential if standard reduction electrode potentials for $\mathrm{Cu}^{2+} / \mathrm{Cu}$ and $\mathrm{Zn}^{2+} / \mathrm{Zn}$ are 0.34 V and -0.76 V respectively.
उत्तर : दिया है, से अभिक्रिया

$$
\mathrm{Zn}(\mathrm{~s}) / \mathrm{ZnSO}_{4} \| \mathrm{CuSO}_{4}(\mathrm{aq}) \mid \mathrm{Cu}(s)
$$

एनोड पर, ऑक्सीकरण

$$
\operatorname{Zn}(s) \rightarrow \mathrm{Zn}^{2+}(a q)+2 e^{-} .
$$

कैथोड पर, अवकरण

$$
\begin{aligned}
& \mathrm{Cu}^{2+}(a q) \rightarrow C u(s) \\
& \begin{aligned}
E_{\text {cell }}^{\circ}=E_{\text {कैथोड }}^{\circ}-E_{\text {एनोड }}^{\circ} \\
\quad=0.34+0.76=1.1 \mathrm{Volt}
\end{aligned}
\end{aligned}
$$

Ans. Cell reaction

$$
\mathrm{Zn}(\mathrm{~s}) / \mathrm{ZnSO}_{4} \| \mathrm{CuSO}_{4}(\mathrm{aq}) \mid \mathrm{Cu}(\mathrm{~s})
$$

At Anode, Oxidation

$$
\mathrm{Zn}(s) \rightarrow \mathrm{Zn}^{2+}(a q)+2 e^{-}
$$

$$
E_{Z n(s) / Z n^{2+}(a q)}^{\circ}=-0.76 \mathrm{~V}
$$

At Cathode, Reduction

$$
\begin{gathered}
\mathrm{Cu}^{2+}(a q) \rightarrow C u(s) \\
E_{\text {ell }}^{\circ}=E_{\text {Cathode }}^{\circ}-E_{\text {Anode }}^{\circ} \\
=0.34+0.76=1.1 \text { Volt }
\end{gathered}
$$

प्र० 5.: निम्नलिखित का इलेक्ट्रॉनिक विन्यास लिखें।
(क) Cr^{3+} (ख) Cu^{+}
Q. Write down the electronic configuration of followings.
(c)
$\mathbf{C r}^{3+}$
(b) Cu^{+}

उत्तर : (a) Cr^{3+}

$$
\begin{aligned}
\mathrm{Cr}_{(24)} & =1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5} \\
\mathrm{Cr}^{3+} & =1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3} \\
& =[\mathrm{Ar}] 3 d^{3}
\end{aligned}
$$

(b) Cu^{+}

$$
\begin{aligned}
\mathrm{Cu}_{29} & =1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10} \\
\mathrm{Cu}^{+} & =1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} \\
& =[\mathrm{Ar}] 3 d^{10}
\end{aligned}
$$

प्र० 6.: निम्नलिखित के I.U.P.A.C. नाम लिखें ?
(क) $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$
(ख) $\left[\mathrm{COCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}$
Q. Write the I.U.P.A.C. name of the following
(a) $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$
(b) $\left[\mathrm{COCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}$

उत्तर : (क) $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ - पोटैशियम टेट्रासायनो निकेलेट (II)
(ख) $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}$ - टेट्राएमिनो डाईक्लोराईडो कोबाल्ट (III) क्लोराईड
Ans. (a) $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ - Potassium tetracyanonickelate (II)
(b) $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}$ - Tetraamino dichlorido cobalt (III) chloride

प्र० 7.: निम्नलिखित के संरचना सूत्र लिखें।
(क) 1, 4-डाईब्रोमोब्यूट-2-ईन
(ख) 3 -हाईड्रोक्सी ब्यूटेनैल
Q. Write down the structural formula of following.
(a) 1, 4-Dibromobut-2-ene
(b) 3-hydroxybutanol

उत्तर : (क)

(ख)

प्र० 8.: नीचे दिये गये अभिक्रियाओं से (A) एवं (B) की पहचान करें।
Q. From the given reactions, identify A and B.

उत्तर :

(A)
(B)

प्र० 9.: क्या होता है जबकि-
(क) इथाइल ब्रोमाईड की अभिक्रिया सोडियम इथॉक्साईड से होती है।
(ख) डाईऐथिल ईथर को फॉस्फोरस पेन्टाक्लोराईड के साथ गर्म किया जाता है।
Q. What happens when-
(a) Ethyl bromide reacts with sodium ethoxide.
(b) Diethyl ether is heated with phosphorus pentachloride.

उत्तर : (क) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{NaBr}$
(ख) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{PCl}_{5} \xrightarrow{\text { Heat }} 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$

प्र०10.: ज्वरनाशक और पूर्तिरोधी में क्या अंतर है ?
Q. Distinguish between antipyretics and antiseptics.

उत्तर : ज्वरनाशक — वह रासायनिक पदार्थ जिसका प्रयोग बुखार में शरीर के ताप को कम करने के लिए किया जाता है। जैसे-पैरासिटामोल, फिनासिटीन
पूर्तिरोधी - वे रसायन है, जो सूक्ष्मजीवों की वृद्धि को रोकते हैं, जैसे-बाइथाओनल, क्लोरोजाइलीनॉल

Ans. Antipyretics - Antipyretics are the chemicals used to bring down the body temperature in case of high fever.
Example - Paracetamol, Phenacetin
Antiseptics - Antiseptics are the cheimicals used to check the growth of microorganisms.
Example - Bithional, Chloroxylenol

प्र०11.: समबहुलक तथा सह बहुलक में क्या अंतर है ? प्रत्येक का एक-एक उदाहरण दें।
Q. What is the difference between homopolymer and co-polymer ? Give one example of each.
उत्तर : समबहुलक - इस बहुलक में केवल एक मोनोमर का उपयोग किया जाता है। जैसे - पॉलीथीन। सहबहुलक - इस बहुलक में एक से ज्यादा मोनोमर का उपयोग किया जाता है। जैसे - नायलॉन-6, 6

Ans. Homopolymer - Homopolymer is that polymer in which only one monomer is used.
Example - Polythene
Co-Polymer - Co-polymer is that polymer in which more than one monomer is used.
Example - Nylon-6, 6

दीर्घ उत्तरीय प्रश्नः-

Long Questions :-

प्र० 1.: निम्नलिखित पदों को समझाएँ।
(क) स्कॉटकी दोष
(ख) फ्रेंकल दोष
(ग) अंतराली दोष
Q. Explain the following terms with suitable example.
(a) Schottky defect
(b) Frenkel defect
(c) Interestital defect

उत्तर : (क) स्कॉटी दोष - इसमें एक धनायन तथा एक ऋणायन अपने निर्थारित स्थान से हटकर क्रिस्टल से गायब हो जाते हैं। ऐसा होने पर दो आयनों के स्थान पर रिक्तियाँ उत्पन्न हो जाती हैं यह प्राय: उच्च समन्वय संख्या वाले वैसे आयनिक यौगिकों में पाया जाता है, जहाँ धनायन तथा ऋणायन का आकार बराबर होता है, जैसे $\mathrm{KCl}, \mathrm{NaCl}$ इत्यादि। इस प्रकार से क्रिस्टल में उत्पन्न दोष

स्कॉटकी दोष कहलाता है। इस दोष के उत्पन्न होने से क्रिस्टल का घनत्व कम हो जाता है तथा कुछ हद तक इसमें विद्युत प्रवाह शुरू हो जाता है।
(ख) फ्रेंकेल दोष - जब क्रिस्टल (lattice) में एक आयन निकलकर lattice के किसी अंतराली स्थान में फंस जाता है, तब आयतन का स्थान रिक्त हो जाता है। क्रिस्टल में उत्पन्न ऐसा दोष फ्रेंकेल दोष कहलाता है। यह प्राय: वैसे आयनिक धनायन की तुलना में बहुत बड़ा होता है, जैसे$\mathrm{AgBr}, \mathrm{ZnS}$ आदि। इस दोष के कारण क्रिस्टल का घनत्व प्रभावित नहीं होता हैं विधुतः चालकता थोड़ा बढ़ जाती है, परन्तु क्रिस्टल के overall composition अपरिवर्तित रहता है।
(ग) अंतराली दोष - जब परमाणु या आयन interstitial void में उपस्थित होते हैं, तब इससे उत्पन्न दोष अंतराली दोष कहलाता है।

Ans. (a) Schottky defect - It arises when one cation and one anion are missing from the lattice. It causes valancies at the place of ions. It is a common defect in ionic compounds of high co-ordination number where both cations and anions are of the same size i.e., $\mathrm{KCl}, \mathrm{NaCl}$ etc. Due to this defect density of crystal decreases and it begins to conduct electricity to a smaller extent.
(b) Frenkel defect - it arises when some of the ions of the lattice occupy interestitial leaving lattice site vacant. This defect is generally found in ionic crystals where anion is of much larger size than the cation viz $\mathrm{AgBr}, \mathrm{ZnS}$ etc. Due to this density does not change, electrical conducting increases to a small extent and there is no change is overall composition of the crystal.
(c) Interstitial Defect - Atom or ions when occupy normally vacant interstitial (voids) positions in a crystal are called interestitial defect.

प्र० 3.: हेनरी के नियम को लिखें एवं इसके मुछ महत्वपूर्ण उपयोग को बताएँ।

Q. State Henary's law mention some of its important applications.

उत्तर : हेनरी का नियम - हेनरी के नियम के अनुसार, "किसी गैस की किसी द्रव में विलेयता गैस के दाब का समानुपाती होता है।"
अथवा, किसी गैस का किसी विलयन के ऊपर आंशिक दाब विलयन में गैस के मोल भिन्नांक का समानुपाती होता है। इसे निम्न प्रकार से व्यकत किया जाता है।

$$
P \propto x \text { या } P=K_{H} x
$$

जहाँ $\mathrm{P}=$ गैस का आंशिक दाब, $x=$ विलयन में गैस का मोल भिन्नांक, यहाँ K_{H} हेनरी स्थिरांक
हेनरी के नियम के उपयोग:-
(क) सोग-जल एवं शीतल पेय में CO_{2} की घुलनशीलता बढ़ाने हेतु बोतल को उच्च दाब पर बंद किया जाता है।
(ख) अधिक ऊँचाई पर रक्त में ऑक्सीजन की विलेयता कम हो जानेसे, पर्वतारोहियों में सोचने की क्षमता कम हो जाती है और वे कमजोरी महसूस करने लगते हैं, जो कि एक अवस्था जिसे anoxia कहा जाता है, का लक्षण है।

Ans. It states that the solubility of a gas in liquid in directly proportional to the pressure of the gas.
Or, the partial pressure of the gas in vapour phase (P) is proportional to the mole fraction of the gas (x) in the solution.
It is expressed as

$$
P=K_{H} x
$$

($\mathrm{P}=$ Partial pressure $\mathrm{x}=$ mole fraction of the gas)
Where $K_{H}=$ Henary's constant
Application of Henary's law:-
(i)

To increase the solubility of CO_{2} in soda water and soft drinks, the bottle is sealed under high pressure.
(ii)

At high altitudes, low blood oxygen causes climbers to become weak and make them unable to think clearly which are symptoms of a condition known as anoxia.

प्र० 4.: SO_{2} गैस और Cl_{2} गैस के विरंजन कार्य विधि में अंतर स्पष्ट करें।

Q. Distinguish bleaching action of $\mathrm{SO}_{\mathbf{2}}$ gas and $\mathbf{C l}_{\mathbf{2}}$ gas.

उत्तर : (क) नमी की उपस्थिति में SO_{2} गैस नवजात हाइड्रोजन मुक्त करती है, जो रंगीन पदार्थ को अवकृत कर रंगहीन कर देती है।

$$
\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2[\mathrm{H}]
$$

रंगीन पदार्थ $+[\mathrm{H}] \rightarrow$ रंगहीन पदार्थ
SO_{2} गैस के द्वारा विरंजित पदार्थ को हवा में रहने पर पुनः रंगीन हो जाता है। इसका विरंजन अस्थायी होता है।
(ख) नमी की उपस्थिति में Cl_{2} गैस नवजात ऑक्सीजन मुक्त करती है, जो रंगीन पदार्थ को ऑक्सीकृत कर रंगहीन कर देती है।

$$
\begin{aligned}
& \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HCl}+2[\mathrm{O}] \\
& \text { रंगीन पदार्थ }+[\mathrm{O}] \rightarrow \text { रंगहीन पदार्थ } \\
& \mathrm{Cl}_{2} \text { गैस द्वारा विरंजन स्थायी होता है। }
\end{aligned}
$$

Ans. (i) Bleaching action of $\mathbf{S O}_{\mathbf{2}} \mathbf{g a s}-\mathrm{SO}_{2}$ gas in presence of moisture acts as a bleaching agent due to its reducing nature.

$$
\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2[\mathrm{H}]
$$

Coloured matter $+[\mathrm{H}] \rightarrow$ Colourless matter

The bleaching is temporary. The bleached matter when exposed to air regains its original colour due to oxidation.
(ii) Bleaching action of chlorine - In presence of moisture Cl_{2} gas produces nascent oxygen that bleaches the coloured matter.

$$
\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HCl}+2[\mathrm{O}]
$$

Coloured matter $+[\mathrm{O}] \rightarrow$ Colourless matter
The bleaching action of Cl_{2} gas is an oxidising action and permanent.

प्र० 5.: क्लोरोफॉर्म बनाने की प्रयोगशाला विधि का वर्णन करें। इसकी निम्नलिखित से अभिक्रिया लिखें।
(क) जलीय KOH
(ख) एसीटोन
(ग) Ag घोल
Q. Describe the method for the preparation of chloroform in the laboratory. How does it react with the following.
(a) Aqueous KOH
(b) Acetone
(c) Ag powder

उत्तर : क्लोरोफार्म बनाने की प्रयोगशाला विधि:- ऐसीटोन, ब्लीचिंग पाउडर तथा जल के गाढ़े मिश्रण को गर्म कर प्रयोगशाला में क्लोरोफार्म बनाया जाता है।

$$
\begin{gathered}
\mathrm{Ca}(\mathrm{OCl}) \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Cl}_{2} \\
\mathrm{O} \\
\mathrm{CH}_{3}-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{CH}_{3}+3 \mathrm{Cl}_{2} \\
2 \mathrm{CCl}_{3} \mathrm{COCH}_{3}+3 \mathrm{HCl} \\
2 \mathrm{CCl}_{3} \mathrm{COCH}_{3}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \underset{\substack{ \\
2 \mathrm{CHCl}_{3} \\
\text { क्लोरोफॉर्म }}}{ }+\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca} \\
\end{gathered}
$$

(क) क्लोरोफार्म गर्म KOH घोल से जालांशित होकर पौटेशियम फॉर्मेट एवं पौटेशियम क्लोराईड देता है।

$$
\mathrm{CHCl}_{3}+4 \mathrm{KOH} \rightarrow \mathrm{HCOOK}+3 \mathrm{KCl}+2 \mathrm{H}_{2} \mathrm{O}
$$

(ख) ऐसीटोन से प्रतिक्रिया कर क्लोरोफार्म, क्लोरीटोन बनाता है।

क्लोरीटोन
(ग) क्लोरोफार्म को Ag powder से प्रतिक्रिया कर ऐसीटिलीन बनता है।

$$
\begin{gathered}
\mathrm{CHCl}_{3}+6 \mathrm{Ag}+\mathrm{Cl}_{3} \mathrm{CH} \rightarrow \\
\text { एसीटिलीन }
\end{gathered}
$$

Ans. Laboratory method for the preparation of chloroform-

Chloroform is prepared in laboratory by heating a paste of acetone, beaching powder and water.

$$
\begin{aligned}
& \mathrm{Ca}(\mathrm{OCl}) \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Cl}_{2} \\
& \mathrm{CH}_{3} \mathrm{COCH}_{3}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{3} . \mathrm{COCH}_{3}+3 \mathrm{HCl} \\
& 2 \mathrm{CCl}_{3} \mathrm{COClH}_{3}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CHCl}_{3}+\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca} \\
& \text { chloroform }
\end{aligned}
$$

(a) Chloroform on hydrolysis with hot KOH solution, gives potassium formate and Potassium chloride

(b) Reaction with Acetone \rightarrow when acetone reacts with CHCl_{3}, chloretone is obtained

(d) Reaction with Ag poder :

Ag powder gives acetylene.

$$
\mathrm{CHCl}_{3}+6 \mathrm{Ag}+\mathrm{Cl}_{3} \mathrm{CH} \rightarrow \mathrm{CH} \equiv \mathrm{CH}+6 \mathrm{AgCl}
$$

1 Set-10

CHEMSIRY-SET-10

सही उत्तर चुने:-

Choose the correct answer :- (1 mark each)

(1) एवागाड्रो संख्या बराबर होता है-
(क) 6.023×10^{24}
(ख) 6.023×10^{23}
(ग) 6.023×10^{-23}
(घ) 6.023×10^{-24}

Avogadro's Number is equal to
(a) 6.023×10^{24}
(b) 6.023×10^{23}
(ख) 6.023×10^{-23}
(d) 6.023×10^{-24}
(2) इथाइन में कार्बन का प्रसंकीकरण है-
(क) SP^{2}
(ख) SP^{3}
(ग) SP
(घ) $\mathrm{SP}^{3} \mathrm{~d}$

The hybridisation of ' C^{\prime} in ethyne is-
(a) SP^{2}
(b) SP^{3}
(c) SP
(d) $\mathrm{SP}^{3} \mathrm{~d}$
(3) किससे सल्फाइड अयस्क का सांद्रण किया जाता है-
(क) निस्तापन
(ख) भर्जन
(ग) फेन प्लवन विधि
(घ) इनमें से कोई नही

Concentration of sulphide ore is done by-
(a) Calcination
(b) roasting
(c) Froth floatation Process
(d) None of these
(4) $20 \% \mathrm{NaOH}(\mathrm{w} / \mathrm{w})$ घोल दिया गया है। इसका मोललता होगा-
(क) 5.25
(ख) 6.25
(ग) 0.25
(घ) 10
$20 \% \mathrm{NaoH}(\mathrm{w} / \mathrm{w})$ solution is given. Its molality will be-
(a) 5.25
(b) 6.25
(c) 025
(d) 10
(5) प्रोपाइन में सिग्मा बंधों की संख्या है-'
(क) 6
(ख) 5
(ग) 4
(घ) 7

Number of 6-bonds in prophyne is-
(a) 6
(b) 5
(c) 4
(d) 7
(6) कौन लौहा का अयस्क है?
(क) बॉक्साइट
(ख) हेमेटाइट
(ग) डोलोमाइंट
(घ) इनमें से कोई नहीं

Which one is the ore of iron?
(a) Bauxite
(b) Haematite
(c) Dolomite
(d) None of thse
(7) प्रवाह करायी जाती है तो यह मुक्त करेगा-
(क) 56 ग्राम Fe
(ख) 28 ग्राम Fe
(ग) 96500 ग्राम Fe
(घ) 965 ग्राम Fe

If 96500 coulomb of electricity is passed through FeSO_{4} solution, it will liberate-
(a) 56 gm Fe
(b) 28 gm Fe
(c) 96500 gm Fe
(d) 965 gm Fe
(8) अल्काइन का सामान्य सूत्र है-
(क) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
(ख) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
(ग) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
(घ) इनमें से कोई नहीं

General formula of alkyne is-
(a) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
(b) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
(c) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
(d) None of these
(9) इनमें से कौन पारामेगनेटिक आयान है?
(क) SC^{3+}
(ख) T_{2}^{4+}
(ग) Cu^{2+}
(घ) $\mathrm{Z}_{\mathrm{n}}^{2+}$

Which on of the following is paramagnetic ion-
(a) SC^{3+}
(b) T_{2}^{4+}
(c) Cu^{2+}
(d) $\mathrm{Z}_{\mathrm{n}}^{2+}$
(10) प्रतिक्रिया की दर को व्यक्त किया जाता है, प्रतिक्रिया दर $\mathrm{K}[\mathrm{A}]^{x}[\mathrm{~B}]^{y}$ प्रतिक्रिया कोटि क्या है?
(क) $\mathrm{x}-\mathrm{y}$
(ख) $\mathrm{x}+\mathrm{y}$
(ग) x
(घ) y

The rate of reactionis exproceced by rate $=K[A]^{x}[B]^{y}$ The order of reaction is-
(a) $x-y$
(b) $x+y$
(c) x
(d) y
(11) इनमें से कौन p -ब्लॉक तत्व है?
(क) Na
(ख) Cu
(ग) B
(घ) Mg

Which of the following is p -block element?
(a) Na
(b) Cu
(c) B
(d) Mg
(12) डयऐथिल ईथर का समावयती है-
(क) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
(ख) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}$
(ग) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
(घ) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CHOH}$

The isomer of diethylether is-
(a) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
(b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}$
(c) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
(d) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CHOH}$
(13) इनमें से कौन विद्युत का सुचालक नहीं है?
(क) द्रवित Nacl
(ख) द्रवित Nacl
(ग) लवण घोल
(घ) कॉपर

Which of the following does not conduct electricity?
(a) Fused Nacl
(b) Solid Nacl
(c) Brine solution
(d) Copper
(14) प्रथम संक्रमण तत्व है-
(क) क्रोमियम
(ख) स्केंडियम
(ग) निकेल
(घ) कॉपर

The first transition element is-
(a) Chromium
(b) Scandium
(ख) Nickel
(d) Copper
(15) कार्बोहाइट्रेट का सामान्य सूत्र है-
(क) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}_{2 \mathrm{n}+2}$
(ख) $\mathrm{C}_{\mathrm{x}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2 \mathrm{x}}$
(ग) $\mathrm{C}_{\mathrm{x}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2 \mathrm{x}}$
(घ) इनमें से कोई नहीं

General formula for carbohydrate is-
(a) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}_{2 \mathrm{n}+2}$
(b) $\mathrm{C}_{\mathrm{x}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2 \mathrm{x}}$
(c) $\mathrm{C}_{\mathrm{x}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2 \mathrm{x}}$
(d) None of these
(16) शुद्ध पदार्थ से रंगीन पदार्थ को दूर करने का लिए सक्रिय कोयला प्रयुक्त होता है। यह काम करता है-
(क) आक्सीकरण
(ख) अवकरण
(ग) बिरंजक
(घ) अधिशोषण

Activated charcoal is used to remove colouring matter from pure substances. It works by-
(a)Oxidation
(b) Reduction
(c) Bleaching
(d) Adsorption
(17) क्रायोलाइट अयस्क है-
(क) लौहा का
(ख) कॉपर का
(ग) जस्ता का
(घ) एलुमिनियम का

Cryolite is an ore of-
(a) Iron
(b) Copper
(c) Zinc
(d)Aluminium
(18) सलोल प्रयुक्त होता है-
(क) रोगाणुरोधक
(ख) एन्टीपाइरेटिक
(ग) दर्दनाशक
(घ) इनमें से कोई नहीं

Salol can be used as-
(a) Artiseptic
(b) Antipyretic
(c) Analgesic
(d) None of these
(19) किसी पदार्थ की प्रतिक्रिया की दर निर्भर करता है-
(क) परमाणु भार
(ख) तुल्यांक भार
(ग) अणुभार
(घ) सक्रिय द्रव्यमान

The rate at which the substance reacts depends on its-
(a) Atomic weight
(b) Equivalent
(c) Molecular weight
(d) Active mass
(20) इनमें से कौन एम्बीडेन्टेट लिगैण्ड है?
(क) SO_{3}^{2-}
(ख) CN^{-}
(ग) NH_{3}
(घ) $\mathrm{H}_{2} \mathrm{O}$

Which one is ambidentate ligand?
(a) SO_{3}^{2-}
(b) CN^{-}
(c) NH_{3}
(d) $\mathrm{H}_{2} \mathrm{O}$
(21) किस नाम के प्रतिक्रिया से एमाइड को एमिन में परिवर्त्तित किया जाता है-
(क) परकिन
(ख) क्लैसन
(ग) हॉफमैन
(घ) कोल्बे

Amides may be converted into aminas by reaction named after
(a) Perkin
(b) Claisen
(c) Hoffmann
(d)Kolbe
(22) फलक केन्द्रित एकक कोष्ठिका में किनारे की लम्बाई होगी-
(क) $\frac{4}{\sqrt{3}} \mathrm{r}$
(ख) $\frac{4}{\sqrt{2}} \mathrm{r}$
(ग) 2 r
(घ) $\frac{\sqrt{3}}{2} \mathrm{r}$

In face centred cubic unit cell, the edge lenght is-
(a) $\frac{4}{\sqrt{3}} \mathrm{r}$
(b) $\frac{4}{\sqrt{2}} \mathrm{r}$
(c) 2 r
(d) $\frac{\sqrt{3}}{2} \mathrm{r}$
(23) $\left[\mathrm{CO}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$आयन में कोबाल्ट का उपसहसंयोजक संख्या है-
(क) 3
(ख) 4
(ग) 5
(घ) 6

The co-ordination number of cobalt in $\left[\mathrm{CO}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$ion is-
(a) 3
(b) 4
(c) 5
(d) 6

4 Set-10

(24) इनमें से कौन प्रबल अम्ल है?
(क) $\mathrm{CH}_{2} \mathrm{FCOOH}$
(ख) $\mathrm{CH}_{2} \mathrm{ClCOOH}$
(ग) $\mathrm{CHCl}_{2} \mathrm{COOH}$
(घ) $\mathrm{CHF}_{2} \mathrm{COOH}$

Which one is the strongest acid?
(a) $\mathrm{CH}_{2} \mathrm{FCOOH}$
(b) $\mathrm{CH}_{2} \mathrm{ClCOOH}$
(c) $\mathrm{CHCl}_{2} \mathrm{COOH}$
(d) $\mathrm{CHF}_{2} \mathrm{COOH}$
(25) आदर्श घोल का उदाहरण है-
(क) n - हेप्टेन तथा n - हेक्सेन
(ख) $\mathrm{CH}_{3} \mathrm{COOH}$ तथा $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
(ग) CHCl_{3} तथा $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$
(घ) $\mathrm{H}_{2} \mathrm{O}$ तथा HNO_{3}
An example of ideal solution is-
(a) n-heptane and n -hexane
(b) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
(c) CHCl_{3} and $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$
(d) $\mathrm{H}_{2} \mathrm{O}$ and HNO_{3}
(26) किसके साथ क्लोरीन को गर्म करने पर बिरंजन चूर्ण प्राप्त होता है-
(क) CaO
(ख) CaCO_{3}
(ग) CaSO_{4}
(घ) $\mathrm{Ca}(\mathrm{OH})_{2}$

Bleaching powder is obtained by heating chlorine with-
(a) CaO
(b) CaCO_{3}
(c) CaSO_{4}
(d) $\mathrm{Ca}(\mathrm{OH})_{2}$
(27) SP^{2} प्रसंकीकरण का उदाहरण है-
(क) NO_{3}^{-}
(ख) SO_{4}^{2-}
(ग) NH_{3}
(घ) CO_{2}

Example of SP^{2} hybridisation is-
(a) NO_{3}^{-}
(b) SO_{4}^{2-}
(c) NH_{3}
(d) CO_{2}
(28) इनमें से कौन सल्फाइड अयस्क नहीं है-
(क) मैग्नेटाइट
(ख) आयरन पाइराइट्स (ग) गैलेना
(घ) कॉपरग्लैन्स

Which of the following is not a sulphide ore?
(a)Magnetite
(b) Ironpyrites
(c) Galena
(d) Copper glance

SOLUTION

(1) b
(2) c
(3) c
(4) b
(5) a
(6) b
(7) b
(8) b
(9) c
(10) b
(11) c
(12) c
(13) b
(14) b
(15) c
(16) d
(17) d
(18) a
(19) d
(20) b
(21) c
(22) b
(23) d
(24) d
(25) a
(26) d
(27) a
(28) a

SECTION-II (Non-Objective), short answer type questions

(1) What is difference between a conductor and semiconductor?

कंडक्टर तथा सेमीकंडकटंर में विभेद क्या है?
(2) What do you mean by elevation in boiling point? show that it is a colligative property? क्बथनांक उन्नयन से क्या समझते हो? दिखाओं कि यह एक अणु संख्य गुणधर्म है।
(3) What is salt bridge? what are its uses?

लवण सेतू क्या है? इसके क्या उपयोग है?
(4) Prove that the halflife period of first order reaction is independent of initial concentration. प्रमाणित करें कि प्रथम उपक्रमित प्रविक्रिया का अर्ध जीवनकाल आरंभिक सान्द्रण से स्वतंत्र है।
(5) Calculate the molarity of pure water.
$(\mathrm{d}=1 \mathrm{gm} / \mathrm{mL})$
शुद्ध जल के मोलरता की गणना करें। ($\mathrm{d}=1$ ग्राम/मि॰ली॰)
(6) Write structurec of the following compounds:-
(a) 2-Methyl butan-2-01
(b) But-2-ene-1,4-dioic acid निम्नांकित यौगिक का संरचना लिखें।
(क) 2- मैथिल व्युटैन-2- ऑल
(ख) ब्यु 2 -इन-1, 4- डाइओइक अम्ल
(7) Define Gangue, Flux slag with examples.

गैंग, गालक, धातुमाल का उदाहरण सहित परिभाषा दें।
(8) Write IUPAC names of following compounds-
(a)

(b)

निम्नलिखित यौगिक का IUPAC नाम लिखें:-
(9) HI is stronger than HF in acidic strenght why?

HF की तुलना में HI अधिक अम्लीय है, क्यों?
(10) What are lyophilic and lyophobic sols? Give one example of each type.

लायोफीलिक सॉल तथा लायोफॉविक सॉल क्या है? प्रत्येक का एक-एक उदाहरण दें।
(11) Give IUPAC name of following compounds-
(a) $\quad \mathrm{K}_{4}\left(\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(b) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
निम्नांकित यौगिकों का IUPAC नाम लिखें:-
(क)
$\mathrm{K}_{4}\left(\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(ख) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
(1) Conductor:- The solids with conductivities raning from 10^{4} to $10^{7} \mathrm{ohm}^{-1} \mathrm{~m}^{-1}$ are called conductors.
Examples are:- $\mathrm{Cu}, \mathrm{Fe}, \mathrm{Ag}$ etc.
Semiconductor:- These are the solids with conductivities in the intermediate range from 10^{-6} to $10^{4} \mathrm{ohm}^{-1} \mathrm{~m}^{-1}$.
Examples are:- Ge , si etc.
(2) Elevation in boiling point of solution:-

When a non-volatile solute is added to a solvent, the boiling point of solution increases in comparision of pure solvent. The increase in boiling point of solution is called elevation in boiling point.

$$
\begin{array}{ll}
\text { Suppose, } & \begin{array}{l}
\text { B.P. of Pure solvent }=\mathrm{To} \\
\\
\text { B.P. of solution }=\mathrm{T}
\end{array}
\end{array}
$$

$$
\therefore \quad \text { Elevation in b.p. }=\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}-\mathrm{T}_{\mathrm{o}}
$$

The elevation of boiling point is directly proportional to the molal concentration of the solut in the solution.

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{b}} \propto \mathrm{~m} \\
& \text { Or, } \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{k}_{\mathrm{b}}-\mathrm{m} \text { where } \mathrm{kb}=\text { Molal ele vation constant. } \\
& \text { or, } \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{k}_{\mathrm{b}}-\mathrm{m} \times \frac{1000 \times \mathrm{n}}{\mathrm{w}} \text { where } \quad \begin{array}{l}
\mathrm{n}=\text { moles of solute } \\
\mathrm{w}=\mathrm{wt} \text {. of solventin graw }
\end{array}
\end{aligned}
$$

Thus, elevation of b.p. depends upon the number of moles of soiute, so, it is colligative property.
(3) Salt bridge:- Salt bridge is inverted U type glass tube containing the saturated solution of KCl or KNO_{3} in agar-agar. It connects the two solutions.
Uses:-
(i) It completes the cell circuit.
(ii) It prevents the two solutions to mix with each other.
(iii) It is minimising the liquid junction potential.
(4) The mathematical expression for the rate constant of first order reaction is-

$$
\mathrm{K}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}}
$$

where $\mathrm{a}=$ Initial concentration $a-x=$ concentration after time (t)
when, $t=t_{1 / 2}$ (half life period)
$a-x=a / 2$
$\therefore \quad \mathrm{k}=\frac{2.303}{\mathrm{t}_{1 / 2}} \log \frac{\mathrm{a}}{\mathrm{a} / 2}$
or, $\mathrm{t}_{1 / 2}=\frac{2.303}{\mathrm{~K}} \log ^{2}$
$=\frac{2.303 \times 0.301}{\mathrm{~K}}$

$$
t_{1 / 2}=\frac{0.693}{\mathrm{~K}}
$$

7 Set-10

(5) Molarity is the number of moles of solute dissolved in one litre of solution.

Volume of pure water takes $=1 \mathrm{~L}$

$$
=1000 \mathrm{~mL}
$$

since, $\mathrm{d}=1 \mathrm{gm} / \mathrm{mL}$
\therefore Weight of pure water $=1000 \mathrm{gm}$
\therefore Number of moles of pure water $=\frac{1000}{18}$

$$
=55.56
$$

Thus, 1 L of pure water contains 55.56 moles of it.
\therefore Molarity $=55.56 \mathrm{M}$
(6)
(a) 2-Methyl butan-2-01

(b) But-2-ene-1,4-dioic and

(7) Gangue :- The impurities present in the ore at the time of extraction of metal, are called gangues. Ex. $\mathrm{CaCO}_{3}, \quad \mathrm{SiO}_{2}$ etc.
Flux : The foreign substance which is added to the ore to remove gangues, is called flux.
Ex. $\mathrm{CaO}_{1} \quad \mathrm{SiO}_{2}$ etc.
Slag: The light fusible substance which is made my the combination of gangue and flux, is called slag.

$$
\mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}
$$

Gangue Flux slag
(8) (a) 2-Bromo 3-methyl butane
(b) 4-methyl but 3-eh 2-one
(9) In HI, iodine is less electronegative and it has large size. Therefore, bonding between hydrogen and iodide is weaker. It will easily split in comparision of HF. Due to more liberation of H^{+}ions, HI is stronger acid.
(10) Lyophilic sols:-

Those colloidal sols which are attracted towards solvent, are called lyophilic sols. These sols are called reversible sols. They are quite stable and can not be easily coagulated.

Ex. Gelatine
Lyophobic sols:- Those colloidal sols which are not easily attracted towards solvent, are called lyophobic sols. These sols are called irreversible sols. These sols are not stable and can be easily coagulated.

Ex. Metal sulphide
(11) (a) Potassium hexacyano ferrate (II) ion
(b) Hexa aqua chromium (III) chloride

8 Set-10

(1) कंडक्टर:- वैसे ठोस जिसकी चालकता 10^{4} से 10^{7} ओह्म $^{-1}$ मी० $^{-1}$ के बीच हो, उसे कंडकटर कहते है।

$$
\text { उदाहरण :- } \mathrm{Cu}, \mathrm{Fe}, \mathrm{Ag} \text { आदि । }
$$

सेमीकंडक्टर:-
वैसे ठोस जिसकी चालकता 10^{-6} से 10^{-4} ओह्म $^{-1}$ मी० $^{-1}$ के बीच रहता हो उसे सेमीकंडक्टर कहते हैं।

$$
\text { उदाहरण :- } \mathrm{Ge}, \mathrm{Si} \text { आदि। }
$$

(2) घोल के क्वथनांक में उन्नयन:-

जब अवाव्पशील धुल्य को घोतक में डाला जाता है तो द्योलक के तुलना में घोल का क्वथनांक बढ़ जाता है। घोल के क्वथनांक का बढ़ना ही घोल के क्वथनांक में उन्नयन कहलाता है। माना कि शुद्ध द्योलक का क्वथनांक $=T_{\text {。 }}$ घोल का क्वथनांक $=T$

क्वथनांक में उन्नयन $=T-\mathrm{T}_{0}=\Delta \mathrm{T}_{\mathrm{b}}$
घोल के क्वथनांक में उन्नयन धोल में धुल्य के मोलल सांद्रण के समानुपानी होता है।

$$
\Delta \mathrm{T}_{\mathrm{b}} \quad \alpha \mathrm{~m}
$$

या, $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$ जहाँ $\mathrm{K}_{\mathrm{b}}=$ मोलल उन्नयन स्थिरांक है।
या, $\Delta T_{b}=K_{b} \cdot \times \frac{1000 \times n}{w}$
जहाँ $\mathrm{n}=$ धुल्य का मोल
$\mathrm{w}=$ घोलक का भार ग्राम में
अतः क्वथनांक का उन्नयन धुल्य के मालों की संख्या पर निर्भर करता है। अतः यह अणुसंख्य गुणध र्म है।
(3) लवण सेतु

यह U (यू) आकार के शीशे का नली होता है जिसमें kcl या $^{\mathrm{KNO}_{3}}$ का संतृप्त विलयन भरा रहता है। यह विलयन अगर-अगर में बनाया जाता है। यह दो विलयनों को जोड़ता है। उपयोग:-
(i) यह सेल परिपथ को पूरा करता है।
(ii) यह दोनों विलयन के आपस में मिलने से रोकता है।
(iii) यह लिक्विक जंकशन विभव को न्यूनतम करता है।
(4) प्रथम कोटि के प्रतिक्रिया के लिए-प्रतिक्रिया दर स्थिरांक को व्यक्त किया जाता है-

$$
K=\frac{2.303}{t} \log \frac{a}{a-x}
$$

जहाँ $\mathrm{a}=$ आरंभिक सांद्रण

$$
(a-x)=\text { ' } t \text { ' समय के बाद सांद्रण }
$$

जब $t=t_{1 / 2}$ (अद्धजीवन काल), $(a-x)=\frac{a}{2}$

$$
\therefore \quad K=\frac{2.303}{t_{1 / 2}} \log ^{a_{/ / / 2}}
$$

$$
\begin{aligned}
t_{1 / 2} & =\frac{2.303}{k} \log 2 \\
& =\frac{2.303 \times 0.301}{k} \\
\text { or, } \quad t_{1 / 2} & =\frac{0.693}{k}
\end{aligned}
$$

अतः प्रथम कोटि के प्रतिक्रिया का अर्द्धजीवन काल आरंभिक सांद्रण से स्वतंत्र है।
(5) एक लीटर विलयन में धुल्य के मोलों की संख्या को विलयन का मोलरता कहते हैं।

जब शुद्ध जल का आयतन एक लीटर लिया गया,
आयतन= 1000 मि॰ली॰
भार $=1000 \mathrm{gm}$ (चुकि $\mathrm{d}=1 \mathrm{gm} /$ मि॰ली॰)
शुद्ध जल के मोलो की संख्या $=\frac{1000}{18}=55.56$ अतः एक ली॰ जल में मोलों की संख्या 55.56 है,

$$
\therefore \quad \text { मोलरता }=55.56 \mathrm{M}
$$

(6)
(क)

(ख)

(7) गैंग:- धातु के निष्कर्षण के समय असस्क में पाये जाने वाले अशुद्धियाँ को गैंग कहते हैं।

$$
\text { उदाहरण:- } \mathrm{CaCO}_{3}, \mathrm{SiO}_{2} \text { आदि }
$$

गालक:- अयस्क से अशुद्धियाँ को दूर करने के लिए बाहरी पदार्थ को मिलाया जाता है। इस बाहरी पदार्थ को गालक कहते है।

$$
\text { उदाहरण:- } \mathrm{CaO}, \mathrm{SiO}_{2} \text { आदि }
$$

धातुमल:- गैंग तथा गालक के मिलने से एक हल्का द्रवित पदार्थ प्राप्त होता है जिसे धातुमल कहा जाता है।

$$
\begin{aligned}
& \mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \\
& \text { गैंग } \\
& \text { Casio3 } \\
& \text { गालक }
\end{aligned} \text { धातुमल }
$$

(8) (क) 2 - ब्रोमो 3 - मैथिल ब्यूटैन
(ख) 4 - मैथिल ब्यूट 3- इन 2- ओन
(9) HI में आयोडीन की वैघुत ॠणात्मकता कम तथा आकार बड़ा है। इसलिए हाइड्रोजन तथा आयोडीन के बीच का बंधन कमजोर होता है। अत: यह जल्दी विघटित होकर H^{+}आयन देता है। HF में फ्लोरीन की वैघुत ऋणात्मकता अधिक तथा आकार कम होता है। अतः हाइड्रोजन के साथ बंधन मजबूत होता है तो जल्दी विघटित नहीं होता है। अत: HI मजबूत अम्ल है।
(10) लायोफीलिक सॉल:- वैसा कोलॉइड सॉल जिसका आकर्षण घोलक के प्रति हो, लायोफीलिक सॉल कहलाता है। ये रिभरसिबॅल सॉल कहलाते हैं। यह स्थायी होते है तथा इसे सरलता से अवक्षेपित नहीं किया जा सकता है।

10 Set-10

उदाहरण- जिलाहीन
लायोफोबिक सॉल:- वे कोलॉइड सॉल जिसका आकर्षण घोलक के प्रति नहीं हो, लायोफोलिक सॉल कहलाते है। ये इरेभरसिबॅल सॉल होते है। यह स्थायी नहीं होता है। इसे सरलता से अवक्षेपित किया जा सकता है।

उदाहरण:- धातु के सल्फाइड
(11) (क) पोटेशियम हेक्सा सायनोफेरेट (ii)
(ख) हेक्सा एक्बा क्रोमियन (iii) क्लोराइड

11 Set-10

LONGANSWER TYPE QUESTIONS

Ques- (1) (a) What do yo mean by first order reaction?
(b) Find out the mathematical expression of rate constant of first order reaction.
(क) प्रथम कोटि प्रतिक्रिया से क्या समझते हो?
(ख) प्रथम कोटि प्रतिक्रिया के प्रतिक्रिया दर का गणीतिय अभिव्यक्ति प्राप्त करो।
Ques- (2) (a) What is the effect of dilution on specific conductivity and molar conductivity?
(b) How many grams of H_{2} and O_{2} are produced during electolysis of water by passing 130 ampere current for 5 hours.
(क) विशिष्ट चालकता तथा आणिक चालकता पर तनुता का क्या प्रभाव है?
(ख) पानी से जब 1.30 एम्पीयर धारा 5 घंटे तक प्रवाह किया जाता है तो कितने ग्राम H_{2} तथा O_{2} प्राप्त होंगे?
Ques- (3) Explain:-
(a) Etyhye is more acidic than ethane.
(b) Ethylamine is more basic than aniliue.
(ख) Phenol is acidic in nature.
व्याख्या करें-
(क) एथाइन इथैन से अधिक अम्लीय है।
(ख) एनिलीन से एथिल अमीन अधिक आस्मिक है।
(ग) फिनॉल स्वभाव से अम्ली है।
Ques- (4) How will you convert the following:-
(a) Ethylamine from ethyl alcohol.
(b) Aniline from ben zene
(ख) Methyl alcohol from methane.
निम्नांकित को कैसे परिवर्तित करोगे?
(क) एथिल अमीन से एथिल अल्कोहल
(ख) बैंजिन से एनिलोन
(ग) मिथैन से मैथिल अल्कोहल
Ques- (5) Name the ores of copper. How is copper extracted from its ore?
कॉपर के अयस्क का नाम लिखो। इसके अयस्क से कॉपर को कैसे निष्कर्षित किया जाता है?

12 Set-10

ANSWER

(1) (a) First order reaction:-

Those reactions inwhich the concenteation of only are reactant molecule changes, are called first order reactions.

$$
\begin{array}{ll}
\text { Ex. } \quad & \mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \\
& \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
\end{array}
$$

(b) Consider a first order reaction as-

$$
\begin{array}{lllr}
& \mathrm{A} \rightarrow & \text { Products } \\
\text { Initrial conc } & \mathrm{a} & & \mathrm{o}
\end{array}
$$

After time t,

$$
\text { conc } \mathrm{a}-\mathrm{x} \quad \mathrm{x}
$$

According to law of mass action,

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{k}(\mathrm{a}-\mathrm{x})
$$

$$
\begin{equation*}
\text { or, } \frac{d x}{a-x}=k d t \tag{1}
\end{equation*}
$$

Integrating equation (1) in both sides,
we get,

$$
\begin{array}{r}
{\left[\frac{d x}{a-x}=k\right] d t} \\
\text { or, }-\ln (a-x)=k t+I \tag{2}
\end{array}
$$

Where I = Integration constant
When $\mathrm{t}=\mathrm{O},(\mathrm{a}-\mathrm{x})=\mathrm{a}$
Thus, $-\ln \mathrm{a}=\mathrm{I}$
Putting the value of 'T' in equation (2), we get-

$$
\begin{array}{ll}
& -\ln (a-x)=k t-\ln a \\
\text { or, } \quad k t=\ln a-\ln (a-x) \\
\text { or, } \quad k t=\ln \frac{a}{a-x} \text { or, } k t=2.303 \log \frac{a}{a-x} \\
\therefore \quad & K=\frac{2.303}{t} \log \frac{a}{a-x}
\end{array}
$$

This is mathematical expression of rate constant of first order reaction.
The conductivity of ions present in I c.c. of solution is called specific conductivity. Due to dilution, the volume of solution increases and there is increase in the number of ions. But number of ions per c.c. of solution decreases. This is the reason that specific conductivity of solution decreases on dilution.

Effect of dilution on molar conductivity

The molar conductivity of solution increases upon dilution. Upon dilution, the volume of the solution increases.

Molar conductivity $=$ SP. conductivity X

13 Set-10

Volume of solution in C.C. containing one mole of solute.
Certainly, SP. conductance of solution decreases upon dilution but when this sp. conductance is multiplied by volume of solution, overall conductivity value increases.
(b) Current $=\mathrm{I}=1.30 \mathrm{amp}$.

Time $=t=5 \times 3600 \mathrm{sec}$.

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{I} \times \mathrm{t} \\
&=1.30 \times 5 \times 3600 \text { coulomb } \\
&=\frac{1.30 \times 5 \times 3600}{96500} \text { Faraday } \\
&=0.242 \mathrm{~F}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Weight of } \mathrm{H}_{2} \text { Produced } & =0.242 \times 1.008 \mathrm{gm} \\
& =0.24 \mathrm{gm} \\
\text { Weight of } \mathrm{O}_{2} \text { Produced } & =0.242 \mathrm{x} 16 \mathrm{gm} \\
= & 3.87 \mathrm{gm}
\end{aligned}
$$

(3) (a) In ethyne, carbon is sp hybridised. The percentage 's' character is 50% which resides near the nucleus. Thus electrons are attracted by nucleus to release H^{+}ions. Hence, it is acidic.

But in ethance, carbon is SP^{3} hybridised. so, the percentage 's' character is 25%. So, electrons are not comparatively attracted release more H^{+}ions. Hence, ethyne is more acidic than ethance.
(b) Ethylamine is more basic than aniline. In ethylamine, ethyl is electron donating group. So, more electrons are available aroudn nitrogen for donation.

But in aniline, phenyl group is electron attracting group. Lone pair of electron on nitrogen is involved in deloealisation.

This is the reason that ethyl amine is more basic than aniline.
(c) Phenol is acidic in nature because after release of H^{+}ion, phenoxide ion is obtained which is resonance stabilized.

(4) (a) Ethyamine from ethylalcohol

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NH}_{3} \frac{\mathrm{Zncl}_{2}}{300^{\circ} \mathrm{c}} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

14 Set-10

(b) Aniline from behzeno

(c) Methyl alcohol from methane

(5) Following are the important ores of copper:-
(i) Copper Pyrites CuFes_{2}
(ii) Cuprite $\mathrm{Cu}_{2} \mathrm{O}$
(iii) Copper glance $\mathrm{Cu}_{2} \mathrm{~S}$

Extraction:- Copper is mainly extracted by copper pyrite ore. It is concentrated by froth floatation process.

The concentrated ore is heated in a reverberatory furnace after mixing with silica. In the furnace, iron oxide forus slag as iron silicate with flux $\left(\right.$ (io $\left._{2}\right)$ and copper is prodkced in the form of copper matte.

Copper matte is then charged into silica lined converter. Some silica is added an hot air blast is blown- Following reactions take place-

$$
\begin{aligned}
& 2 \mathrm{Fes}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{FeO}+25 \mathrm{O}_{2} \\
& \mathrm{Feo}+\mathrm{Sio}_{2} \rightarrow \mathrm{Fesio}_{3} \text { (slag) } \\
& 2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+250_{2} \\
& 2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}
\end{aligned}
$$

The solidified copper obtained has blistered appearance due to evolution of SO_{2}. So, it is called blister copper.
(1) (क) प्रथम कोटि प्रतिक्रिया

वैसी प्रतिक्रिया जिसमें केवल एक अभिकारक का सांद्रण प्रतिक्रिया क्रम में परिवर्तित हो, प्रथम कोटि प्रतिक्रिया कहलाती है।

उदाहरण:-

$$
\begin{aligned}
& \mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \\
& \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
\end{aligned}
$$

(ख) माना कि प्रथम कोटि की प्रतिक्रिया है-

$$
\mathrm{A} \longrightarrow \text { Products }
$$

प्रारंभिक सांद्रण a
0
't' समय के बाद सांद्रण $a-x \quad x$
द्रत्यमान अनुपाती क्रिया के नियम के अनुसार,

$$
\frac{d x}{d t}=K(a-x)
$$

or, $\quad \frac{d x}{a-x}=K d t$
समीकरण (1) के दोनों तरफ इनटेगरेट करने पर,
$\left\{\frac{d x}{a-x}=k\right\} d t$
or, $\quad-\ln \left(a-x_{-}=k t+I\right.$
जहाँ $\mathrm{I}=$ इनटेगेरेशन रिथरांक है।
When $\mathrm{t}=\mathrm{o},(\mathrm{a}-\mathrm{x})=\mathrm{a}$
अत:, $-\ln \mathrm{a}=\mathrm{I}$
समीकरण (2) में I का मान रखने पर हम पाते हैं कि-
$-\ell n(a-x)=k t-\ell n a$
या, $k t=\ln \mathrm{a}-\ln (a-x)$
$=\ln \frac{a}{a-x}$
या, $k t=2.303 \log \frac{a}{a-x}$
या, $k=\frac{2.303}{t} \log \frac{a}{a-x}$
यही प्रथम कोटि प्रतिक्रिया के दर स्थिरांक का गणीतिय अभिव्यक्ति है।
(2) विशिष्ट चालकता पर तनुता का प्रभाव

एक धन से.मी. विलयन में उपस्थित आयतों को चालकता को विशिष्ट चालकता कहते है। तनुता बढ़ाने पर विलयन का आयतन बढ़ जाता है लेकिन प्रति धन से.मी. आयनों की संख्या घट जाती है। यही कारण है कि तनुता बढ़ाने पर विलयन का विशिष्ट चालकता घट जाता है।

आणिवक चालकता पर तनुता का प्रभाव

तनुता बढ़ाने से विलयन का आण्विक चालकता बढ़ जाता है। तनुता बढ़ाने पर विलयन का आयतन बढ़ जाता है।

आणिवक चालकता $=$ विशिष्ट चालकता \times विलयन का आयतन धन से.मी.
में जिसमें एक मोल धुल्य धुला हो।
निशिचित ही तनुता बढ़ाने पर विशिष्ट चालकता घटता है, लेकिन बढ़े हुए आयतन से जब इसे गुणा किया जाता है तो कुल मान बढ़ जाता है। यही कारण है कि तनुता बढ़ाने पर आण्विक चालकता बढ़ जाता है।
$\begin{array}{ll}\text { (ख) } \begin{array}{l}\text { धारा }(\mathrm{I}) \\ \\ \text { धारा }(\mathrm{t})\end{array}=1.30 \text { एम्पीयर } \\ & =5 \times 3600 \text { से० }\end{array}$

$$
\begin{aligned}
\therefore \quad \mathrm{Q} & =\mathrm{I} \times \mathrm{t} \\
& =1.30 \times 5 \times 3600 \text { कुलॉम } \\
& =1.30 \times 5 \times 3600 \text { पैराडे } \\
& 96500
\end{aligned}
$$

$$
=0.242 \mathrm{~F}
$$

अत: हाइड्रोजन गैस उत्पन्न $=0.242 \times 1.008 \mathrm{gm}$

$$
=0.24 \mathrm{gm}
$$

ऑक्सीजन गैस उत्पन्न $=0.242 \times 16 \mathrm{gm}$

$$
=3.87 \text { ग्राम }
$$

(3) (ख) एथाइन में कार्बन SP संकरित है। ' S ' ऑरबिटल का प्रतिशत 50% है जो नामि के नजदीक रहात है। नाभिक धनावेश है जो नजदीक के एलेक्ट्रॉन को अपनी ओर आकर्षित करता है। फलतः H^{+} आयन मुक्त होता है। यही कारण है कि एथाइन अधिक अम्लीय है।

इथैन में कार्बन SP^{3} संकरित है। इसमें ' S ' ऑरबिटल का प्रतिशत 25% ही है। अतः नाभिक कम एलेक्ट्रॉन को ही अपनी ओर आकर्षित करता है। फलत H^{+}आयन मुक्त होना अति कम से जाता है। यही कारण है कि एथाइन इथैन से अधिक अम्लीय है।
(ख) एथिल अमीन एनिलीन से अधिक भास्मिक हे। कारण यह है कि एथिल अमीन में उपस्थित एथिल समूह एलेक्ट्रॉन प्रदान करने वाला समूह है। अतः नाइट्रोजन को एलेक्ट्रॉन प्रदान करने की क्षमता बढ़ जाती है।

लेकिन एनिलीन में उपस्थित फिनाइल समूह एलेक्ट्रॉन खींचने वाला समूह है। अत: नाइट्रोजन पर उपस्थित एलेक्ट्रॉन के एकल युग्म भी फिनाइल समूह की ओर आकर्षित हो जाता है। अतः नाइट्रोजन को एलेक्ट्रॉन प्रदान करने की क्षमता घअ जाती है। अतः एनिलीन कमजोर भस्म है। (ग) फिनॉल प्रकृति में अम्लीय है। इसका कारण यह है कि H^{+}आयन मुक्त होने के बाद फिनाक्साइड आयन बनता है जो रेजोनेन्स संरचना बनाने के कारण स्थायी होते हैं।

फिनाक्साइड आयन

(4) एथिल अल्कोहल से एथिल अमीन
(क) Ethylamine from ethylalcohol
(ख) बेंजिन से एनिलीन

17 Set-10

(5) कॉपर के प्रमुख अयस्क निम्न है-
(1) कॉपर पायराइट्स CuFes_{2}
(2) क्युपराइट $\mathrm{Cu}_{2} \mathrm{O}$
(3) कॉपर ग्लेन्स $\mathrm{Cu}_{2} \mathrm{~S}$

निष्कर्षण:- कॉपर का निष्कर्षण मुख्यत: कॉपर उपयराइट्स अयस्क से किया जाता है। इसका सांद्रण फेन उत्पलावन विधि से किया जाता है।

सांद्रित अयस्क को सिलिका $\left(\mathrm{SiO}_{2}\right)$ के साथ मिलकर रिभरबेरेटरी भट्ठी में गर्म किया जाता है। भट्ठी में लौह ऑसाइड सिलिका के साथ मिलकर लौह सिलिकेट (धातुमल) बनाता है। उत्पन्न कॉपर को कॉपर मैटे कहा जाता है।

कॉपर मैटे को सिलिकाजरित कंभर्टर में रखा जाता है जिसमें कुछ सिलिका मिला दिया जाता है तथा गर्म हवा को झौंका प्रवाहित किया जाता है। यहाँ निम्नांकित प्रतिक्रियाएँ होती है-

$$
\begin{aligned}
& 2 \mathrm{Fes}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{FeO}+25 \mathrm{O}_{2} \\
& \mathrm{Feo}+\mathrm{SiO}_{2} \rightarrow \mathrm{Fesio}_{3} \text { (slag) } \\
& 2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+250_{2} \\
& 2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}
\end{aligned}
$$

यहाँ ठोल कॉपर जो प्राप्त होता है उसमें SO_{2} गैस निकलने के कारण फकोले रहता है। इसी कारण यह फलोलेदार कॉपर कहलाता है।

